Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Licht steuert Licht: Wie ein optischer Transistor funktioniert

11.10.2011
Der Transistor ist eine der einflussreichsten Erfindungen des 20. Jahrhunderts.

In Fernsehern, Telefonen, Computern und anderen Geräten des Alltags hat er die Schlüsselfunktion, elektrische Signale durch elektrische Signale zu steuern. Je kleiner dabei die Schaltkreise sind, mit denen die Signale übertragen werden, desto schneller ist die Verarbeitung der Daten.

An der Universität Bayreuth hat ein Forschungsteam um Prof. Dr. Jürgen Köhler, Dr. Martti Pärs und Prof. Dr. Mukundan Thelakkat jetzt die Verstärkerfunktion eines optischen Transistors demonstriert. Die Pointe: In diesem Transistor ersetzt Licht den Strom. Lichtsignale werden durch Lichtsignale gesteuert.

In der neuen Online-Ausgabe der Zeitschrift "Angewandte Chemie International Edition" stellen die Bayreuther Wissenschaftler ihre Entdeckung vor. An den Forschungsarbeiten war insbesondere Dr. Martti Pärs, ein Bayreuther Nachwuchswissenschaftler, beteiligt. Die jetzt veröffentlichten Ergebnisse sind hervorgegangen aus der engen Zusammenarbeit zwischen der Experimentalphysik und der Makromolekülchemie auf dem Bayreuther Campus. Sie legen Grundlagen für eine völlig neue Generation von Transistoren. Die DFG fördert die Forschungsarbeiten auf diesem Gebiet im Rahmen des Graduiertenkollegs "Fotophysik synthetischer und biologischer multichromophorer Systeme".

Zwei Moleküle im Team:
Ein lichtgesteuerter Schalter und ein leuchtstarker Partner
Das in Bayreuth verwendete Bauprinzip eines optischen Transistors ist einfach. Zwei Moleküle werden chemisch miteinander verbunden. Durch Lichtsignale mit unterschiedlichen Wellenlängen wird das eine der beiden Moleküle abwechselnd in einen Zustand A oder B versetzt. Es reagiert dabei wie ein Schalter, der zwischen zwei gegensätzlichen Stellungen hin- und herspringt. Je nachdem, ob sich dieses lichtgesteuerte Schalter-Molekül im Zustand A oder B befindet, sendet das mit ihm verbundene Molekül ein schwaches oder starkes Lichtsignal aus: Licht steuert Licht. Dabei entsteht ein erheblicher Verstärkungseffekt. Denn schon ein kleines Lichtsignal reicht aus, um das Schalter-Molekül in eine Stellung zu bringen, in der das Partnermolekül stark aufleuchtet.
Prinzipielle Vorteile:
Höchste Effizienz auf kleinstem Raum
Ein so funktionierender Transistor bietet erhebliche Vorteile, wenn man ihn mit herkömmlichen Transistoren vergleicht: Letztere lassen sich aus physikalischen Gründen nicht beliebig verkleinern. Allen Bestrebungen, möglichst kleine Schaltkreise für den Transport elektrischer Signale zu entwickeln, ist eine natürliche Grenze gesetzt. Hingegen lässt sich eine Steuerung von Lichtsignalen durch Lichtsignale bereits auf molekularer Ebene realisieren, wie die Bayreuther Wissenschaftler jetzt gezeigt haben. Optische Transistoren kann es daher prinzipiell bereits auf molekularer Längenskala geben. Sie sind von Hause aus kleiner und damit auch schneller als elektrische Transistoren.

Ein weiterer Vorteil: Weil Lichtsignale – im Gegensatz zu elektrischen Signalen – sich nicht gegenseitig stören, können mehrere optische "Mini-Transistoren" zu einem größeren und umso leistungsfähigeren Transistor zusammengesetzt werden. Dann werden viele Daten auf kleinstem Raum parallel verarbeitet. Und schließlich ist jeder optische Transistor, wie groß er auch sein mag, in einer Hinsicht unschlagbar: Alle Signale werden mit Lichtgeschwindigkeit verarbeitet – schneller geht’s nicht.

Physikalische Details:
Aus dem Innenleben eines optischen Transistors
Bei dem in Bayreuth verwendeten Schalter-Molekül handelt es sich um Dithienylcyclopenten (DCP). Im Zentrum dieses symmetrisch aufgebauten Moleküls befindet sich ein Kohlenstoffring. Ist dieser Ring geschlossen, öffnet er sich, sobald er von einem ultravioletten Lichtstrahl (280 - 310 nm) getroffen wird. Ist der Ring offen, schließt er sich, sobald er einem sichtbaren farbigen Lichtstrahl (500 - 650 nm) ausgesetzt ist. Weil das DCP, abhängig von der Wellenlänge des Lichtstrahls, zwischen den beiden Strukturen hin- und herwechselt, wird es in der Forschung als photochromes Molekül bezeichnet.

An gegenüberliegenden Seiten des DCP haben die Bayreuther Forscher zwei organische Moleküle angehängt, die der Gruppe der Perylenbisimide (PBI) angehören. PBI-Moleküle sind dafür bekannt, dass sie stark aufleuchten – genauer gesagt: fluoreszieren – können. Dies ist immer dann der Fall, wenn ein PBI-Molekül Lichtenergie absorbiert hat und diese in vollem Umfang nach außen abgibt.

Ein PBI-Molekül, das wie ein Arm an ein DCP-Molekül angehängt ist, leuchtet unterschiedlich stark – je nachdem, ob der Ring in diesem Schalter-Molekül offen oder geschlossen ist. Ist er geschlossen, befindet sich das DCP auf einem relativ niedrigen Energieniveau. Infolgedessen überträgt das PBI den größten Teil seiner absorbierten Lichtenergie auf das DCP. Das DCP gibt die Lichtenergie ohne Fluoreszenzeffekte nach außen ab. Das PBI selbst leuchtet in diesem Fall nur schwach. Ist der Ring im DCP jedoch offen, verhält es sich umgekehrt. Dann befindet sich das DCP auf einem so hohen Energieniveau, dass das PBI keine Lichtenergie an das DCP weitergeben kann. Stattdessen leitet es die absorbierte Lichtenergie uneingeschränkt nach außen weiter: Das PBI leuchtet stark.

Weitere Herausforderungen für die Forschung

Mit diesen Forschungsergebnissen zeichnet sich die Zukunftsvision einer neuartigen Generation von Transistoren ab. Damit sie eines Tages verwirklicht werden kann, sind aber weitere Forschungsarbeiten erforderlich. Beispielsweise hat es den Anschein, als ob die fluoreszierenden PBI-Moleküle während langer Zeiträume ausbleichen, so dass ihre Leuchtkraft schwächer wird. Diesen Effekt gilt es genauer zu untersuchen. Ein weiterer Aspekt: In der bisher verwendeten Versuchsanordnung dauert es relativ lange, bis sich die Ringe bei einer großen Zahl von DCP-Molekülen öffnen und wieder schließen. Folglich sind die Abstände zwischen den dadurch gesteuerten Lichtsignalen noch ziemlich groß. Das Bayreuther Forschungsteam sucht deshalb nach einer Lösung, um diese Zeiten zu verkürzen.

Veröffentlichung:

Martti Pärs, Christiane C. Hofmann, Katja Willinger, Peter Bauer,
Mukundan Thelakkat, and Jürgen Köhler,
An Organic Optical Transistor Operated under Ambient Conditions,
in: Angewandte Chemie International Edition 2011, 50,
Article first published online: 5 Oct 2011
DOI-Bookmark: 10.1002/anie.201104193
Ansprechpartner für weitere Informationen:
Prof. Dr. Jürgen Köhler
Experimentalphysik IV
Universität Bayreuth
D-95440 Bayreuth
Telefon: +49 (0)921 / 55-4000 und 55-4001
E-Mail: Juergen.Koehler@uni-bayreuth.de
Dr. Martti Pärs
Experimentalphysik IV
Universität Bayreuth
D-95440 Bayreuth
Telefon: +49 (0)921 / 55-4003
E-Mail: Martti.Paers@uni-bayreuth.de
Prof. Dr. Mukundan Thelakkat
Angewandte Funktionspolymere
Universität Bayreuth
D-95440 Bayreuth
Telefon: +49 (0)921 / 55-3108
E-Mail: Mukundan.Thelakkat@uni-bayreuth.de

Christian Wißler | Universität Bayreuth
Weitere Informationen:
http://www.uni-bayreuth.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas
19.09.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern
15.09.2017 | Max-Planck-Institut für Quantenoptik

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantensensoren entschlüsseln magnetische Ordnung in neuartigem Halbleitermaterial

Physiker konnte erstmals eine spiralförmige magnetische Ordnung in einem multiferroischen Material abbilden. Diese gelten als vielversprechende Kandidaten für zukünftige Datenspeicher. Der Nachweis gelang den Forschern mit selbst entwickelten Quantensensoren, die elektromagnetische Felder im Nanometerbereich analysieren können und an der Universität Basel entwickelt wurden. Die Ergebnisse von Wissenschaftlern des Departements Physik und des Swiss Nanoscience Institute der Universität Basel sowie der Universität Montpellier und Forschern der Universität Paris-Saclay wurden in der Zeitschrift «Nature» veröffentlicht.

Multiferroika sind Materialien, die gleichzeitig auf elektrische wie auch auf magnetische Felder reagieren. Die beiden Eigenschaften kommen für gewöhnlich...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

»Laser in Composites Symposium« in Aachen – von der Wissenschaft in die Anwendung

19.09.2017 | Veranstaltungen

Biowissenschaftler tauschen neue Erkenntnisse über molekulare Gen-Schalter aus

19.09.2017 | Veranstaltungen

Zwei Grad wärmer – und dann?

19.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

»Laser in Composites Symposium« in Aachen – von der Wissenschaft in die Anwendung

19.09.2017 | Veranstaltungsnachrichten

Zentraler Schalter der Immunabwehr gefunden

19.09.2017 | Biowissenschaften Chemie

Neue Materialchemie für Hochleistungsbatterien

19.09.2017 | Biowissenschaften Chemie