Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Licht steuert Licht: Wie ein optischer Transistor funktioniert

11.10.2011
Der Transistor ist eine der einflussreichsten Erfindungen des 20. Jahrhunderts.

In Fernsehern, Telefonen, Computern und anderen Geräten des Alltags hat er die Schlüsselfunktion, elektrische Signale durch elektrische Signale zu steuern. Je kleiner dabei die Schaltkreise sind, mit denen die Signale übertragen werden, desto schneller ist die Verarbeitung der Daten.

An der Universität Bayreuth hat ein Forschungsteam um Prof. Dr. Jürgen Köhler, Dr. Martti Pärs und Prof. Dr. Mukundan Thelakkat jetzt die Verstärkerfunktion eines optischen Transistors demonstriert. Die Pointe: In diesem Transistor ersetzt Licht den Strom. Lichtsignale werden durch Lichtsignale gesteuert.

In der neuen Online-Ausgabe der Zeitschrift "Angewandte Chemie International Edition" stellen die Bayreuther Wissenschaftler ihre Entdeckung vor. An den Forschungsarbeiten war insbesondere Dr. Martti Pärs, ein Bayreuther Nachwuchswissenschaftler, beteiligt. Die jetzt veröffentlichten Ergebnisse sind hervorgegangen aus der engen Zusammenarbeit zwischen der Experimentalphysik und der Makromolekülchemie auf dem Bayreuther Campus. Sie legen Grundlagen für eine völlig neue Generation von Transistoren. Die DFG fördert die Forschungsarbeiten auf diesem Gebiet im Rahmen des Graduiertenkollegs "Fotophysik synthetischer und biologischer multichromophorer Systeme".

Zwei Moleküle im Team:
Ein lichtgesteuerter Schalter und ein leuchtstarker Partner
Das in Bayreuth verwendete Bauprinzip eines optischen Transistors ist einfach. Zwei Moleküle werden chemisch miteinander verbunden. Durch Lichtsignale mit unterschiedlichen Wellenlängen wird das eine der beiden Moleküle abwechselnd in einen Zustand A oder B versetzt. Es reagiert dabei wie ein Schalter, der zwischen zwei gegensätzlichen Stellungen hin- und herspringt. Je nachdem, ob sich dieses lichtgesteuerte Schalter-Molekül im Zustand A oder B befindet, sendet das mit ihm verbundene Molekül ein schwaches oder starkes Lichtsignal aus: Licht steuert Licht. Dabei entsteht ein erheblicher Verstärkungseffekt. Denn schon ein kleines Lichtsignal reicht aus, um das Schalter-Molekül in eine Stellung zu bringen, in der das Partnermolekül stark aufleuchtet.
Prinzipielle Vorteile:
Höchste Effizienz auf kleinstem Raum
Ein so funktionierender Transistor bietet erhebliche Vorteile, wenn man ihn mit herkömmlichen Transistoren vergleicht: Letztere lassen sich aus physikalischen Gründen nicht beliebig verkleinern. Allen Bestrebungen, möglichst kleine Schaltkreise für den Transport elektrischer Signale zu entwickeln, ist eine natürliche Grenze gesetzt. Hingegen lässt sich eine Steuerung von Lichtsignalen durch Lichtsignale bereits auf molekularer Ebene realisieren, wie die Bayreuther Wissenschaftler jetzt gezeigt haben. Optische Transistoren kann es daher prinzipiell bereits auf molekularer Längenskala geben. Sie sind von Hause aus kleiner und damit auch schneller als elektrische Transistoren.

Ein weiterer Vorteil: Weil Lichtsignale – im Gegensatz zu elektrischen Signalen – sich nicht gegenseitig stören, können mehrere optische "Mini-Transistoren" zu einem größeren und umso leistungsfähigeren Transistor zusammengesetzt werden. Dann werden viele Daten auf kleinstem Raum parallel verarbeitet. Und schließlich ist jeder optische Transistor, wie groß er auch sein mag, in einer Hinsicht unschlagbar: Alle Signale werden mit Lichtgeschwindigkeit verarbeitet – schneller geht’s nicht.

Physikalische Details:
Aus dem Innenleben eines optischen Transistors
Bei dem in Bayreuth verwendeten Schalter-Molekül handelt es sich um Dithienylcyclopenten (DCP). Im Zentrum dieses symmetrisch aufgebauten Moleküls befindet sich ein Kohlenstoffring. Ist dieser Ring geschlossen, öffnet er sich, sobald er von einem ultravioletten Lichtstrahl (280 - 310 nm) getroffen wird. Ist der Ring offen, schließt er sich, sobald er einem sichtbaren farbigen Lichtstrahl (500 - 650 nm) ausgesetzt ist. Weil das DCP, abhängig von der Wellenlänge des Lichtstrahls, zwischen den beiden Strukturen hin- und herwechselt, wird es in der Forschung als photochromes Molekül bezeichnet.

An gegenüberliegenden Seiten des DCP haben die Bayreuther Forscher zwei organische Moleküle angehängt, die der Gruppe der Perylenbisimide (PBI) angehören. PBI-Moleküle sind dafür bekannt, dass sie stark aufleuchten – genauer gesagt: fluoreszieren – können. Dies ist immer dann der Fall, wenn ein PBI-Molekül Lichtenergie absorbiert hat und diese in vollem Umfang nach außen abgibt.

Ein PBI-Molekül, das wie ein Arm an ein DCP-Molekül angehängt ist, leuchtet unterschiedlich stark – je nachdem, ob der Ring in diesem Schalter-Molekül offen oder geschlossen ist. Ist er geschlossen, befindet sich das DCP auf einem relativ niedrigen Energieniveau. Infolgedessen überträgt das PBI den größten Teil seiner absorbierten Lichtenergie auf das DCP. Das DCP gibt die Lichtenergie ohne Fluoreszenzeffekte nach außen ab. Das PBI selbst leuchtet in diesem Fall nur schwach. Ist der Ring im DCP jedoch offen, verhält es sich umgekehrt. Dann befindet sich das DCP auf einem so hohen Energieniveau, dass das PBI keine Lichtenergie an das DCP weitergeben kann. Stattdessen leitet es die absorbierte Lichtenergie uneingeschränkt nach außen weiter: Das PBI leuchtet stark.

Weitere Herausforderungen für die Forschung

Mit diesen Forschungsergebnissen zeichnet sich die Zukunftsvision einer neuartigen Generation von Transistoren ab. Damit sie eines Tages verwirklicht werden kann, sind aber weitere Forschungsarbeiten erforderlich. Beispielsweise hat es den Anschein, als ob die fluoreszierenden PBI-Moleküle während langer Zeiträume ausbleichen, so dass ihre Leuchtkraft schwächer wird. Diesen Effekt gilt es genauer zu untersuchen. Ein weiterer Aspekt: In der bisher verwendeten Versuchsanordnung dauert es relativ lange, bis sich die Ringe bei einer großen Zahl von DCP-Molekülen öffnen und wieder schließen. Folglich sind die Abstände zwischen den dadurch gesteuerten Lichtsignalen noch ziemlich groß. Das Bayreuther Forschungsteam sucht deshalb nach einer Lösung, um diese Zeiten zu verkürzen.

Veröffentlichung:

Martti Pärs, Christiane C. Hofmann, Katja Willinger, Peter Bauer,
Mukundan Thelakkat, and Jürgen Köhler,
An Organic Optical Transistor Operated under Ambient Conditions,
in: Angewandte Chemie International Edition 2011, 50,
Article first published online: 5 Oct 2011
DOI-Bookmark: 10.1002/anie.201104193
Ansprechpartner für weitere Informationen:
Prof. Dr. Jürgen Köhler
Experimentalphysik IV
Universität Bayreuth
D-95440 Bayreuth
Telefon: +49 (0)921 / 55-4000 und 55-4001
E-Mail: Juergen.Koehler@uni-bayreuth.de
Dr. Martti Pärs
Experimentalphysik IV
Universität Bayreuth
D-95440 Bayreuth
Telefon: +49 (0)921 / 55-4003
E-Mail: Martti.Paers@uni-bayreuth.de
Prof. Dr. Mukundan Thelakkat
Angewandte Funktionspolymere
Universität Bayreuth
D-95440 Bayreuth
Telefon: +49 (0)921 / 55-3108
E-Mail: Mukundan.Thelakkat@uni-bayreuth.de

Christian Wißler | Universität Bayreuth
Weitere Informationen:
http://www.uni-bayreuth.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Neue Harmonien in der Optoelektronik
21.07.2017 | Georg-August-Universität Göttingen

nachricht Von photonischen Nanoantennen zu besseren Spielekonsolen
20.07.2017 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Einblicke unter die Oberfläche des Mars

Die Region erstreckt sich über gut 1000 Kilometer entlang des Äquators des Mars. Sie heißt Medusae Fossae Formation und über ihren Ursprung ist bislang wenig bekannt. Der Geologe Prof. Dr. Angelo Pio Rossi von der Jacobs University hat gemeinsam mit Dr. Roberto Orosei vom Nationalen Italienischen Institut für Astrophysik in Bologna und weiteren Wissenschaftlern einen Teilbereich dieses Gebietes, genannt Lucus Planum, näher unter die Lupe genommen – mithilfe von Radarfernerkundung.

Wie bei einem Röntgenbild dringen die Strahlen einige Kilometer tief in die Oberfläche des Planeten ein und liefern Informationen über die Struktur, die...

Im Focus: Molekulares Lego

Sie können ihre Farbe wechseln, ihren Spin verändern oder von fest zu flüssig wechseln: Eine bestimmte Klasse von Polymeren besitzt faszinierende Eigenschaften. Wie sie das schaffen, haben Forscher der Uni Würzburg untersucht.

Bei dieser Arbeit handele es sich um ein „Hot Paper“, das interessante und wichtige Aspekte einer neuen Polymerklasse behandelt, die aufgrund ihrer Vielfalt an...

Im Focus: Das Universum in einem Kristall

Dresdener Forscher haben in Zusammenarbeit mit einem internationalen Forscherteam einen unerwarteten experimentellen Zugang zu einem Problem der Allgemeinen Realitätstheorie gefunden. Im Fachmagazin Nature berichten sie, dass es ihnen in neuartigen Materialien und mit Hilfe von thermoelektrischen Messungen gelungen ist, die Schwerkraft-Quantenanomalie nachzuweisen. Erstmals konnten so Quantenanomalien in simulierten Schwerfeldern an einem realen Kristall untersucht werden.

In der Physik spielen Messgrößen wie Energie, Impuls oder elektrische Ladung, welche ihre Erscheinungsform zwar ändern können, aber niemals verloren gehen oder...

Im Focus: Manipulation des Elektronenspins ohne Informationsverlust

Physiker haben eine neue Technik entwickelt, um auf einem Chip den Elektronenspin mit elektrischen Spannungen zu steuern. Mit der neu entwickelten Methode kann der Zerfall des Spins unterdrückt, die enthaltene Information erhalten und über vergleichsweise grosse Distanzen übermittelt werden. Das zeigt ein Team des Departement Physik der Universität Basel und des Swiss Nanoscience Instituts in einer Veröffentlichung in Physical Review X.

Seit einigen Jahren wird weltweit untersucht, wie sich der Spin des Elektrons zur Speicherung und Übertragung von Information nutzen lässt. Der Spin jedes...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungen

Den Nachhaltigkeitskreis schließen: Lebensmittelschutz durch biobasierte Materialien

21.07.2017 | Veranstaltungen

Operatortheorie im Fokus

20.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einblicke unter die Oberfläche des Mars

21.07.2017 | Geowissenschaften

Wegbereiter für Vitamin A in Reis

21.07.2017 | Biowissenschaften Chemie

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungsnachrichten