Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie das Licht der Sonne

12.06.2009
Leuchtdioden liefern sehr energieeffizientes Licht. Könnte man sie zur Beleuchtung einsetzen, würde das eine Menge Energie sparen.

Bisher gelingt es zwar, rote und blaue LEDs herzustellen, doch fehlen derzeit noch grüne LEDs, um das Spektrum des Tageslichts nachzuempfinden und damit weißes Licht zu erzeugen. Zinkoxid könnte diese Lücke schließen.

Die Zeiten, in denen Fahrradfahrer nachts mit ihrem schwachen dynamobetriebenen Licht leicht zu übersehen waren, sind vorbei. Heutzutage blinkt und leuchtet es einem schon von weitem entgegen. Das weiße Vorderlicht ist dabei besonders grell, es erscheint eher blau als weiß. Das Wohnzimmer möchte sich mit diesem Licht wohl niemand beleuchten.

Das Licht der Sonne setzt sich aus rotem, grünem und blauem Licht zusammen - mit sämtlichen Zwischentönen. Grün ist in dem Spektrum am meisten vertreten. Bisher wird zur Herstellung von Leuchtdioden Galliumarsenid (GaAs) für rotes Licht und Galliumnitrid (GaN) für blaues Licht verwendet.

Diese beiden Halbleitermaterialien bilden auch die Grundlage für Fahrradlampen. Da das grüne Lichtspektrum fehlt, empfinden wir das Licht als kalt und unnatürlich. Dr. Detlef Klimm und seine Mitarbeiter vom IKZ entwickeln derzeit ein Material, das für Leuchtdioden mit allen sichtbaren Wellenlängen geeignet ist. Die Physiker nennen solche Materialien breitbandige Halbleiter.

Ein solch breitbandiger Halbleiter ist das Zinkoxid (ZnO). Es hat eine relativ einfache Kristallstruktur und eignet sich daher gut für den Bau von Leuchtdioden. Die Schwierigkeit besteht darin, einen reinen Zinkoxid-Kristall herzustellen. Zinkoxid liegt gewöhnlich als weißes Pulver vor, es ist zum Beispiel in Salben zur Wundheilung enthalten.

Normalerweise gehen die Wissenschaftler zur Herstellung eines Kristalls so vor: In einem Tiegel schmelzen sie das Material. Damit sich während des Abkühlens beim Übergang von der flüssigen zur festen Phase die gewünschte Kristallstruktur bildet, befindet sich am Boden des Topfes schon ein kleiner fertiger Kristall, der "Keim", an dessen Gitterstruktur die Moleküle beim Abkühlen andocken. So setzt sich die Struktur immer weiter fort.

Beim Zinkoxid funktioniert das nicht so einfach, da es beim Erhitzen direkt verdampft, ohne vorher flüssig zu werden. Doch Detlef Klimm weiß dafür eine Lösung: "Ein leichter Überdruck reicht, damit es beim Erhitzen von Zinkoxid einen flüssigen Zustand gibt." Der Schmelzpunkt liegt bei fast 2000 Grad Celsius. Daraus ergibt sich ein weiteres, etwas kniffligeres Problem: Der Schmelztiegel darf auch bei großer Hitze nicht selber schmelzen, und er darf nicht mit dem Material reagieren, denn sonst ist der Kristall nicht rein. Ein gutes Tiegelmaterial ist Iridium. Es ist hitzebeständig und chemisch stabil. Allerdings reagiert Iridium leicht mit Sauerstoff. Sauerstoff liegt zwar eigentlich gar nicht vor, doch zerfällt das Zinkoxid beim Erhitzen leicht in Zink und Sauerstoff, und reagiert wieder zu Zinkoxid. Ein solches Hin- und Herschaukeln nennen die Chemiker Gleichgewichtsreaktion.

"Bei hohen Temperaturen macht das nichts aus", erläutert Klimm. "Das Iridium oxidiert nur bei niedrigen Temperaturen. Doch da müssen wir eben durch." Klimms Idee zur Lösung des Problems ist so genial wie einfach: Wenn die Umgebung bei hohen Temperaturen mit Sauerstoff übersättigt wäre, würde das Zinkoxid nicht mehr so leicht zerfallen. Bei tieferen Temperaturen darf hingegen kein Sauerstoff vorhanden sein, denn sonst würde er den Iridium-Tiegel verbrennen. Also hat Klimm als Atmosphäre Kohlendioxid in den Tiegel gegeben, das dieselbe Gleichgewichtsreaktion wie das Zinkoxid aufweist. Im Laufe der Erhitzung zerfällt das Kohlendioxid in CO und Sauerstoff, in der Atmosphäre ist dann viel Sauerstoff enthalten, und der Zerfall des Zinkoxids wird gehemmt. Beim Abkühlen wird überschüssiger Sauerstoff wieder durch das CO gebunden und somit das Verbrennen des Iridiums verhindert. So kann ein reiner Kristall entstehen, den kein Iridium "verschmutzt".

Klimm hat in Versuchen gezeigt, dass das Prinzip funktioniert und hat ein Patent darauf. Nun geht es darum, noch weiter zu tüfteln und das Verfahren zu optimieren. Derzeit wird eine neue Anlage in Betrieb genommen, in der es nur minimale Temperaturschwankungen gibt, so dass keine Risse im Kristall entstehen.

Das Verfahren ist aber schon so weit entwickelt, dass Klimm und seine Mitarbeiter mit der Berliner Firma CrysTec einen Industriepartner gefunden haben, der aus den im IKZ hergestellten Zinkoxid-Kristallen Wafer herstellt und kommerziell vertreibt. Nun wird noch ein Partner für den übernächsten Schritt gesucht, nämlich die Herstellung von Leuchtdioden aus Zinkoxid.

Kontakt:
Dr. habil. Detlef Klimm
Leibniz-Institut für Kristallzüchtung (IKZ)
Max-Born-Straße 2
12489 Berlin
Telefon: (030) 6392-3024
E-Mail: klimm@ikz-berlin.de

Gesine Wiemer | idw
Weitere Informationen:
http://www.ikz-berlin.de
http://www.fv-berlin.de/pm_archiv/2009/21-sonnenlicht.html

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Klein bestimmt über groß?
29.03.2017 | Max-Planck-Institut für Dynamik und Selbstorganisation

nachricht Quantenkommunikation: Wie man das Rauschen überlistet
29.03.2017 | Technische Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Organisch-anorganische Heterostrukturen mit programmierbaren elektronischen Eigenschaften

29.03.2017 | Energie und Elektrotechnik

Klein bestimmt über groß?

29.03.2017 | Physik Astronomie

OLED-Produktionsanlage aus einer Hand

29.03.2017 | Messenachrichten