Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie das Licht der Sonne

12.06.2009
Leuchtdioden liefern sehr energieeffizientes Licht. Könnte man sie zur Beleuchtung einsetzen, würde das eine Menge Energie sparen.

Bisher gelingt es zwar, rote und blaue LEDs herzustellen, doch fehlen derzeit noch grüne LEDs, um das Spektrum des Tageslichts nachzuempfinden und damit weißes Licht zu erzeugen. Zinkoxid könnte diese Lücke schließen.

Die Zeiten, in denen Fahrradfahrer nachts mit ihrem schwachen dynamobetriebenen Licht leicht zu übersehen waren, sind vorbei. Heutzutage blinkt und leuchtet es einem schon von weitem entgegen. Das weiße Vorderlicht ist dabei besonders grell, es erscheint eher blau als weiß. Das Wohnzimmer möchte sich mit diesem Licht wohl niemand beleuchten.

Das Licht der Sonne setzt sich aus rotem, grünem und blauem Licht zusammen - mit sämtlichen Zwischentönen. Grün ist in dem Spektrum am meisten vertreten. Bisher wird zur Herstellung von Leuchtdioden Galliumarsenid (GaAs) für rotes Licht und Galliumnitrid (GaN) für blaues Licht verwendet.

Diese beiden Halbleitermaterialien bilden auch die Grundlage für Fahrradlampen. Da das grüne Lichtspektrum fehlt, empfinden wir das Licht als kalt und unnatürlich. Dr. Detlef Klimm und seine Mitarbeiter vom IKZ entwickeln derzeit ein Material, das für Leuchtdioden mit allen sichtbaren Wellenlängen geeignet ist. Die Physiker nennen solche Materialien breitbandige Halbleiter.

Ein solch breitbandiger Halbleiter ist das Zinkoxid (ZnO). Es hat eine relativ einfache Kristallstruktur und eignet sich daher gut für den Bau von Leuchtdioden. Die Schwierigkeit besteht darin, einen reinen Zinkoxid-Kristall herzustellen. Zinkoxid liegt gewöhnlich als weißes Pulver vor, es ist zum Beispiel in Salben zur Wundheilung enthalten.

Normalerweise gehen die Wissenschaftler zur Herstellung eines Kristalls so vor: In einem Tiegel schmelzen sie das Material. Damit sich während des Abkühlens beim Übergang von der flüssigen zur festen Phase die gewünschte Kristallstruktur bildet, befindet sich am Boden des Topfes schon ein kleiner fertiger Kristall, der "Keim", an dessen Gitterstruktur die Moleküle beim Abkühlen andocken. So setzt sich die Struktur immer weiter fort.

Beim Zinkoxid funktioniert das nicht so einfach, da es beim Erhitzen direkt verdampft, ohne vorher flüssig zu werden. Doch Detlef Klimm weiß dafür eine Lösung: "Ein leichter Überdruck reicht, damit es beim Erhitzen von Zinkoxid einen flüssigen Zustand gibt." Der Schmelzpunkt liegt bei fast 2000 Grad Celsius. Daraus ergibt sich ein weiteres, etwas kniffligeres Problem: Der Schmelztiegel darf auch bei großer Hitze nicht selber schmelzen, und er darf nicht mit dem Material reagieren, denn sonst ist der Kristall nicht rein. Ein gutes Tiegelmaterial ist Iridium. Es ist hitzebeständig und chemisch stabil. Allerdings reagiert Iridium leicht mit Sauerstoff. Sauerstoff liegt zwar eigentlich gar nicht vor, doch zerfällt das Zinkoxid beim Erhitzen leicht in Zink und Sauerstoff, und reagiert wieder zu Zinkoxid. Ein solches Hin- und Herschaukeln nennen die Chemiker Gleichgewichtsreaktion.

"Bei hohen Temperaturen macht das nichts aus", erläutert Klimm. "Das Iridium oxidiert nur bei niedrigen Temperaturen. Doch da müssen wir eben durch." Klimms Idee zur Lösung des Problems ist so genial wie einfach: Wenn die Umgebung bei hohen Temperaturen mit Sauerstoff übersättigt wäre, würde das Zinkoxid nicht mehr so leicht zerfallen. Bei tieferen Temperaturen darf hingegen kein Sauerstoff vorhanden sein, denn sonst würde er den Iridium-Tiegel verbrennen. Also hat Klimm als Atmosphäre Kohlendioxid in den Tiegel gegeben, das dieselbe Gleichgewichtsreaktion wie das Zinkoxid aufweist. Im Laufe der Erhitzung zerfällt das Kohlendioxid in CO und Sauerstoff, in der Atmosphäre ist dann viel Sauerstoff enthalten, und der Zerfall des Zinkoxids wird gehemmt. Beim Abkühlen wird überschüssiger Sauerstoff wieder durch das CO gebunden und somit das Verbrennen des Iridiums verhindert. So kann ein reiner Kristall entstehen, den kein Iridium "verschmutzt".

Klimm hat in Versuchen gezeigt, dass das Prinzip funktioniert und hat ein Patent darauf. Nun geht es darum, noch weiter zu tüfteln und das Verfahren zu optimieren. Derzeit wird eine neue Anlage in Betrieb genommen, in der es nur minimale Temperaturschwankungen gibt, so dass keine Risse im Kristall entstehen.

Das Verfahren ist aber schon so weit entwickelt, dass Klimm und seine Mitarbeiter mit der Berliner Firma CrysTec einen Industriepartner gefunden haben, der aus den im IKZ hergestellten Zinkoxid-Kristallen Wafer herstellt und kommerziell vertreibt. Nun wird noch ein Partner für den übernächsten Schritt gesucht, nämlich die Herstellung von Leuchtdioden aus Zinkoxid.

Kontakt:
Dr. habil. Detlef Klimm
Leibniz-Institut für Kristallzüchtung (IKZ)
Max-Born-Straße 2
12489 Berlin
Telefon: (030) 6392-3024
E-Mail: klimm@ikz-berlin.de

Gesine Wiemer | idw
Weitere Informationen:
http://www.ikz-berlin.de
http://www.fv-berlin.de/pm_archiv/2009/21-sonnenlicht.html

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Waschen für die Mikrowelt – Potsdamer Physiker entwickeln lichtempfindliche Seife
02.12.2016 | Universität Potsdam

nachricht Quantenreibung: Jenseits der Näherung des lokalen Gleichgewichts
01.12.2016 | Forschungsverbund Berlin e.V.

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie