Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie das Licht der Sonne

12.06.2009
Leuchtdioden liefern sehr energieeffizientes Licht. Könnte man sie zur Beleuchtung einsetzen, würde das eine Menge Energie sparen.

Bisher gelingt es zwar, rote und blaue LEDs herzustellen, doch fehlen derzeit noch grüne LEDs, um das Spektrum des Tageslichts nachzuempfinden und damit weißes Licht zu erzeugen. Zinkoxid könnte diese Lücke schließen.

Die Zeiten, in denen Fahrradfahrer nachts mit ihrem schwachen dynamobetriebenen Licht leicht zu übersehen waren, sind vorbei. Heutzutage blinkt und leuchtet es einem schon von weitem entgegen. Das weiße Vorderlicht ist dabei besonders grell, es erscheint eher blau als weiß. Das Wohnzimmer möchte sich mit diesem Licht wohl niemand beleuchten.

Das Licht der Sonne setzt sich aus rotem, grünem und blauem Licht zusammen - mit sämtlichen Zwischentönen. Grün ist in dem Spektrum am meisten vertreten. Bisher wird zur Herstellung von Leuchtdioden Galliumarsenid (GaAs) für rotes Licht und Galliumnitrid (GaN) für blaues Licht verwendet.

Diese beiden Halbleitermaterialien bilden auch die Grundlage für Fahrradlampen. Da das grüne Lichtspektrum fehlt, empfinden wir das Licht als kalt und unnatürlich. Dr. Detlef Klimm und seine Mitarbeiter vom IKZ entwickeln derzeit ein Material, das für Leuchtdioden mit allen sichtbaren Wellenlängen geeignet ist. Die Physiker nennen solche Materialien breitbandige Halbleiter.

Ein solch breitbandiger Halbleiter ist das Zinkoxid (ZnO). Es hat eine relativ einfache Kristallstruktur und eignet sich daher gut für den Bau von Leuchtdioden. Die Schwierigkeit besteht darin, einen reinen Zinkoxid-Kristall herzustellen. Zinkoxid liegt gewöhnlich als weißes Pulver vor, es ist zum Beispiel in Salben zur Wundheilung enthalten.

Normalerweise gehen die Wissenschaftler zur Herstellung eines Kristalls so vor: In einem Tiegel schmelzen sie das Material. Damit sich während des Abkühlens beim Übergang von der flüssigen zur festen Phase die gewünschte Kristallstruktur bildet, befindet sich am Boden des Topfes schon ein kleiner fertiger Kristall, der "Keim", an dessen Gitterstruktur die Moleküle beim Abkühlen andocken. So setzt sich die Struktur immer weiter fort.

Beim Zinkoxid funktioniert das nicht so einfach, da es beim Erhitzen direkt verdampft, ohne vorher flüssig zu werden. Doch Detlef Klimm weiß dafür eine Lösung: "Ein leichter Überdruck reicht, damit es beim Erhitzen von Zinkoxid einen flüssigen Zustand gibt." Der Schmelzpunkt liegt bei fast 2000 Grad Celsius. Daraus ergibt sich ein weiteres, etwas kniffligeres Problem: Der Schmelztiegel darf auch bei großer Hitze nicht selber schmelzen, und er darf nicht mit dem Material reagieren, denn sonst ist der Kristall nicht rein. Ein gutes Tiegelmaterial ist Iridium. Es ist hitzebeständig und chemisch stabil. Allerdings reagiert Iridium leicht mit Sauerstoff. Sauerstoff liegt zwar eigentlich gar nicht vor, doch zerfällt das Zinkoxid beim Erhitzen leicht in Zink und Sauerstoff, und reagiert wieder zu Zinkoxid. Ein solches Hin- und Herschaukeln nennen die Chemiker Gleichgewichtsreaktion.

"Bei hohen Temperaturen macht das nichts aus", erläutert Klimm. "Das Iridium oxidiert nur bei niedrigen Temperaturen. Doch da müssen wir eben durch." Klimms Idee zur Lösung des Problems ist so genial wie einfach: Wenn die Umgebung bei hohen Temperaturen mit Sauerstoff übersättigt wäre, würde das Zinkoxid nicht mehr so leicht zerfallen. Bei tieferen Temperaturen darf hingegen kein Sauerstoff vorhanden sein, denn sonst würde er den Iridium-Tiegel verbrennen. Also hat Klimm als Atmosphäre Kohlendioxid in den Tiegel gegeben, das dieselbe Gleichgewichtsreaktion wie das Zinkoxid aufweist. Im Laufe der Erhitzung zerfällt das Kohlendioxid in CO und Sauerstoff, in der Atmosphäre ist dann viel Sauerstoff enthalten, und der Zerfall des Zinkoxids wird gehemmt. Beim Abkühlen wird überschüssiger Sauerstoff wieder durch das CO gebunden und somit das Verbrennen des Iridiums verhindert. So kann ein reiner Kristall entstehen, den kein Iridium "verschmutzt".

Klimm hat in Versuchen gezeigt, dass das Prinzip funktioniert und hat ein Patent darauf. Nun geht es darum, noch weiter zu tüfteln und das Verfahren zu optimieren. Derzeit wird eine neue Anlage in Betrieb genommen, in der es nur minimale Temperaturschwankungen gibt, so dass keine Risse im Kristall entstehen.

Das Verfahren ist aber schon so weit entwickelt, dass Klimm und seine Mitarbeiter mit der Berliner Firma CrysTec einen Industriepartner gefunden haben, der aus den im IKZ hergestellten Zinkoxid-Kristallen Wafer herstellt und kommerziell vertreibt. Nun wird noch ein Partner für den übernächsten Schritt gesucht, nämlich die Herstellung von Leuchtdioden aus Zinkoxid.

Kontakt:
Dr. habil. Detlef Klimm
Leibniz-Institut für Kristallzüchtung (IKZ)
Max-Born-Straße 2
12489 Berlin
Telefon: (030) 6392-3024
E-Mail: klimm@ikz-berlin.de

Gesine Wiemer | idw
Weitere Informationen:
http://www.ikz-berlin.de
http://www.fv-berlin.de/pm_archiv/2009/21-sonnenlicht.html

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Sind Zeitreisen physikalisch möglich?
26.06.2017 | Goethe-Universität Frankfurt am Main

nachricht Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion
23.06.2017 | Max-Planck-Institut für Astrophysik

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften