Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Licht im Rückwärtsgang

18.08.2011
Was man sonst mit komplizierten Meta-Materialien zu erreichen versucht, gelang an der Technischen Universität (TU) Wien nun mit ganz gewöhnlichen Metallen: Eine negative Brechzahl lässt Lichtstrahlen „falsch herum“ abbiegen.
Man muss nur einen geraden Stab ins Wasser halten, um den Effekt zu sehen: An der Grenzfläche zwischen Wasser und Luft ändert das Licht seine Richtung, der Stab sieht aus, als wäre er an der Wasseroberfläche geknickt. Wie stark geknickt der Stab erscheint, wird durch die Brechungszahl (oder Brechungsindex) beschrieben.

Seit Jahren versucht man, spezielle Materialien mit negativer Brechungszahl herzustellen - sie verhalten sich optisch ganz anders, als wir das gewohnt sind. An der TU Wien wurde nun gezeigt: Selbst ganz gewöhnliche Metalle können eine negative Brechzahl haben, wenn man sie in ein Magnetfeld steckt.

Verkehrte Lichtbrechung für neuartige Linsen

Wenn man mit dem Auto an der Grenze zwischen Asphaltstraße und Schnee fährt, kann es passieren, dass sich die Räder am Asphalt schneller vorwärtsbewegen als die Räder am Schnee. Damit ändert sich die Fahrtrichtung und man kommt ins Schleudern. Etwas Ähnliches geschieht mit Lichtstrahlen, die an eine Grenzfläche zwischen zwei Materialien stoßen, in denen sich das Licht unterschiedlich schnell bewegt – etwa Luft und Glas. „Die Brechzahl gibt an, wie stark das Licht abgelenkt wird. Typischerweise liegt sie bei 1 – wie im Vakuum oder Luft - oder darüber – wie in meisten transparenten Substanzen“, erklärt Professor Andrei Pimenov vom Institut für Festkörperphysik der TU Wien. Allerdings wird schon seit Jahren spekuliert, welche neuen Eigenschaften Materialien haben könnten, deren Brechungszahl negativ ist. Beim Übergang in ein solches Material würde das Licht gewissermaßen den Rückwärtsgang einlegen und genau andersherum gebrochen werden, als das normalerweise geschieht. Das könnte, so vermutet man, ganz neue optische Effekte und Technologien ermöglichen.

Metall knickt Lichtstrahlen

Bisher wurde angenommen, dass man solche Effekte nur in sogenannten Meta-Materialien finden kann. Solche Materialien werden aus speziellen feinen Strukturen hergestellt, die das Licht auf mikroskopischer Ebene in der gewünschten Weise streuen. An der TU Wien stellte sich aber nun heraus, dass man mit einfachen Tricks sogar in ganz normalen Metallen wie Kobalt oder Eisen einen negativen Brechungsindex beobachten kann. „Wir setzen das Metall einem starken Magnetfeld aus und bestrahlen es mit Licht, dessen Wellenlänge genau zur Stärke des Magnetfeldes passt“, erklärt Andrei Pimenov. Verwendet wird Mikrowellenstrahlung, die eine dünne Metallfolie teilweise durchdringen kann. Durch magnetische Resonanz-Effekte im Metall wird das Licht dann an der Grenzfläche dramatisch abgelenkt und bewegt sich innerhalb des Materials in die Gegenrichtung - so ähnlich als wäre im Inneren des Metalls ein Spiegel eingebaut.

Die perfekte Linse

Besondere Aufmerksamkeit haben Materialien mit negativem Brechungsindex in den letzten Jahren auf sich gezogen, weil ihr seltsames Verhalten ganz neue optische Linsen ermöglichen könnte. Das Auflösungsvermögen von gewöhnlichen Linsen ist durch die verwendete Wellenlänge beschränkt: Mit meterlangen Radarwellen kann man keinen Schmetterling fotografieren, mit sichtbarem Licht lässt sich kein Atom abbilden. „Mit einem Material, das eine negative Brechungszahl aufweist, könnte man theoretisch jedoch eine beliebig gute Auflösung erzielen“, erklärt Andrei Pimenov. Simple Metalle dafür verwenden zu können ist viel einfacher als komplizierte Meta-Materialien aufbauen zu müssen. Um richtige Linsen bauen zu können, müssen nun allerdings noch Methoden gefunden werden, die Abschwächung des Lichtstrahls durch Absorption auszugleichen.

Bilderdownload: http://www.tuwien.ac.at/dle/pr/aktuelles/downloads/2011/licht/

Originalpublikation: http://epljournal.edpsciences.org/index.php?option=com_article&access=
standard&Itemid=129&url=/articles/epl/abs/2011/15/epl13688/epl13688.html>

Rückfragehinweis:
Prof. Andrei Pimenov
Institut für Festkörperphysik
Technische Universität Wien
Wiedner Hauptstraße 8-10, 1040 Wien
T: +43-1-58801-137 23
andrei.pimenov@tuwien.ac.at

Aussender:
Dr. Florian Aigner
Büro für Öffentlichkeitsarbeit
Technische Universität Wien
Operngasse 11, 1040 Wien
T: +43-1-58801-41027
florian.aigner@tuwien.ac.at

Materials & Matter ist – neben Computational Science & Engineering, Quantum Physics & Quantum Technologies, Information & Communication Technology sowie Energy & Environment – einer von fünf Forschungsschwerpunkten der Technischen Universität Wien. Geforscht wird von der Nanowelt bis hin zur Entwicklung neuer Werkstoffe für großvolumige Anwendungen. Die Forschenden arbeiten sowohl theoretisch, beispielsweise an mathematischen Modellen im Computer, wie auch experimentell an der Entwicklung und Erprobung innovativer Materialien.
Share

Dr. Florian Aigner | Technische Universität Wien
Weitere Informationen:
http://www.tuwien.ac.at

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht MADMAX: Ein neues Experiment zur Erforschung der Dunklen Materie
20.10.2017 | Max-Planck-Institut für Physik

nachricht Hochfeldmagnet am BER II: Einblick in eine versteckte Ordnung
20.10.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonellen als Medikament gegen Tumore

HZI-Forscher entwickeln Bakterienstamm, der in der Krebstherapie eingesetzt werden kann

Salmonellen sind gefährliche Krankheitserreger, die über verdorbene Lebensmittel in den Körper gelangen und schwere Infektionen verursachen können. Jedoch ist...

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Hochfeldmagnet am BER II: Einblick in eine versteckte Ordnung

Seit dreißig Jahren gibt eine bestimmte Uranverbindung der Forschung Rätsel auf. Obwohl die Kristallstruktur einfach ist, versteht niemand, was beim Abkühlen unter eine bestimmte Temperatur genau passiert. Offenbar entsteht eine so genannte „versteckte Ordnung“, deren Natur völlig unklar ist. Nun haben Physiker erstmals diese versteckte Ordnung näher charakterisiert und auf mikroskopischer Skala untersucht. Dazu nutzten sie den Hochfeldmagneten am HZB, der Neutronenexperimente unter extrem hohen magnetischen Feldern ermöglicht.

Kristalle aus den Elementen Uran, Ruthenium, Rhodium und Silizium haben eine geometrisch einfache Struktur und sollten keine Geheimnisse mehr bergen. Doch das...

Im Focus: Schmetterlingsflügel inspiriert Photovoltaik: Absorption lässt sich um bis zu 200 Prozent steigern

Sonnenlicht, das von Solarzellen reflektiert wird, geht als ungenutzte Energie verloren. Die Flügel des Schmetterlings „Gewöhnliche Rose“ (Pachliopta aristolochiae) zeichnen sich durch Nanostrukturen aus, kleinste Löcher, die Licht über ein breites Spektrum deutlich besser absorbieren als glatte Oberflächen. Forschern am Karlsruher Institut für Technologie (KIT) ist es nun gelungen, diese Nanostrukturen auf Solarzellen zu übertragen und deren Licht-Absorptionsrate so um bis zu 200 Prozent zu steigern. Ihre Ergebnisse veröffentlichten die Wissenschaftler nun im Fachmagazin Science Advances. DOI: 10.1126/sciadv.1700232

„Der von uns untersuchte Schmetterling hat eine augenscheinliche Besonderheit: Er ist extrem dunkelschwarz. Das liegt daran, dass er für eine optimale...

Im Focus: Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

Im Blut zirkulierende Biomoleküle und Zellen sind Träger diagnostischer Information, deren Analyse hochwirksame, individuelle Therapien ermöglichen. Um diese Information zu erschließen, haben Wissenschaftler des Fraunhofer-Instituts für Lasertechnik ILT ein Mikrochip-basiertes Diagnosegerät entwickelt: Der »AnaLighter« analysiert und sortiert klinisch relevante Biomoleküle und Zellen in einer Blutprobe mit Licht. Dadurch können Frühdiagnosen beispielsweise von Tumor- sowie Herz-Kreislauf-Erkrankungen gestellt und patientenindividuelle Therapien eingeleitet werden. Experten des Fraunhofer ILT stellen diese Technologie vom 13.–16. November auf der COMPAMED 2017 in Düsseldorf vor.

Der »AnaLighter« ist ein kompaktes Diagnosegerät zum Sortieren von Zellen und Biomolekülen. Sein technologischer Kern basiert auf einem optisch schaltbaren...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Konferenz IT-Security Community Xchange (IT-SECX) am 10. November 2017

23.10.2017 | Veranstaltungen

Die Zukunft der Luftfracht

23.10.2017 | Veranstaltungen

Ehrung des Autors Herbert W. Franke mit dem Kurd-Laßwitz-Sonderpreis 2017

23.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Magma sucht sich nach Flankenkollaps neue Wege

23.10.2017 | Geowissenschaften

Neues Sensorsystem sorgt für sichere Ernte

23.10.2017 | Informationstechnologie

Salmonellen als Medikament gegen Tumore

23.10.2017 | Biowissenschaften Chemie