Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Licht-Pärchen aus Quantenpunkten

27.03.2013
Kleine Halbleiterstrukturen zeigen ähnliche Quanteneffekte wie einzelne Atome. Solche sogenannten Quantenpunkte nutzen Physiker der Universität Innsbruck, um paarweise Lichtteilchen zu produzieren. Das Team um Gregor Weihs kann so erstmals gezielt einzelne Photonenpaare erzeugen und auch direkt nachweisen.

Die Innsbrucker Physiker verwenden für ihr Experiment Quantenpunkte aus Indiumarsenid, einem Halbleitermaterial. Jeder Quantenpunkt besteht aus rund 10.000 Atomen und verhält sich aufgrund seiner nanoskopischen Struktur ähnlich wie ein einzelnes Atom. Mit flüssigem Helium werden die in einem geschichteten Material eingebetteten Quantenpunkte stark abgekühlt.


Mit einem gepulsten Laser (rot) werden in Quantenpunkten gezielt einzelne Photonenpaare erzeugt. Bild: Uni Innsbruck

Um Photonenpaare zu erzeugen, regen die Physiker die Quantenpunkte mit einem gepulsten Laserstrahl an. Die von einem einzelnen Quantenpunkt emittierten Photonen sammeln sie mit einem Mikroskop-Objektiv.

„Wir wählen die Frequenz des Anregungslasers so aus“, erklärt Gregor Weihs vom Institut für Experimentalphysik der Universität Innsbruck, „dass sie genau zwischen den Frequenzen der beiden Photonen liegt. So können wir das Photonenpaar eindeutig nachweisen, ohne dass der Anregungslaser unsere Messung stört.“

Die Experimente der Gruppe um Gregor Weihs belegen, dass die neue Photonenpaarquelle extrem effizient arbeitet, es können gezielt einzelne Photonenpaare erzeugt werden. „Dies ist ein großer Vorteil gegenüber den heute gängigen Quellen aus Halbleiterkristallen, bei denen die Photonen relativ unkontrolliert erzeugt werden“, freut sich Weihs über diesen Durchbruch. „Auch der technische Aufwand ist gegenüber den bisher entwickelten Einzelphotonenquellen deutlich geringer.“

Geeignet für Chiptechnologie

„Für viele Anwendungen ist es interessant, Photonenpaare kontrolliert und damit ununterscheidbar zu erzeugen“, sagt Gregor Weihs. „Auch lassen sich diese Photonen miteinander verschränken und so zum Beispiel für die Quantenkryptografie oder für optische Quantencomputer verwenden.“ Technologisch sind Quantenpunkte als Photonenquellen deshalb so interessant, weil sie analog zu herkömmlicher Computerchip-Technologie auf einem Halbleiterchip integriert und mit optischen Schaltkreisen verbunden werden können.
Die international zusammengesetzte Forschergruppe der Universität Innsbruck arbeitete bei dem Experiment mit Wissenschaftlern des Joint Quantum Institute in Maryland, USA, zusammen und wurde unter anderem vom Europäischen Forschungsrat ERC und dem österreichischen Wissenschaftsfonds FWF unterstützt. Die Ergebnisse wurden jetzt in der Fachzeitschrift Physical Review Letters veröffentlicht.

Publikation: Deterministic photon pairs and coherent optical control of a single quantum dot. Harishankar Jayakumar, Ana Predojeviæ, Tobias Huber, Thomas Kauten, Glenn S. Solomon und Gregor Weihs. Phys. Rev. Lett. 110, 135505 (2013) DOI: 10.1103/PhysRevLett.110.135505
Rückfragehinweis:
Univ.-Prof. Dr. Gregor Weihs
Institut für Experimentalphysik
Universität Innsbruck
Tel.: +43 512 507 52550
E-Mail: gregor.weihs@uibk.ac.at
Web: www.uibk.ac.at/exphys/photonik

Dr. Christian Flatz
Büro für Öffentlichkeitsarbeit
Universität Innsbruck
Tel.: 43 512 507 32022
Mobil: +43 676 872532022
E-Mail: christian.flatz@uibk.ac.at
Weitere Informationen:
http://dx.doi.org/10.1103/PhysRevLett.110.135505
- Deterministic photon pairs and coherent optical control of a single quantum dot. Harishankar Jayakumar, Ana Predojeviæ, Tobias Huber, Thomas Kauten, Glenn S. Solomon und Gregor Weihs. Phys. Rev. Lett. 110, 135505 (2013)
http://www.uibk.ac.at/exphys/photonik
- Arbeitsgruppe Photonik am Institut für Experimentalphysik der Universität Innsbruck

Dr. Christian Flatz | Universität Innsbruck
Weitere Informationen:
http://www.uibk.ac.at

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Vorstoß ins Innere der Atome
23.02.2018 | Max-Planck-Institut für Quantenoptik

nachricht Quanten-Wiederkehr: Alles wird wieder wie früher
23.02.2018 | Technische Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics