Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Licht und Mikromechanik im Gleichklang

06.08.2009
Erstmals „starke Kopplung“ zwischen Photonen und mechanischem Objekt erzeugt

Physiker des Instituts für Quantenoptik und Quanteninformation (IQOQI) in Wien und Innsbruck erzeugen erstmals eine Wechselwirkung zwischen Licht und Mikromechanik, die stark genug ist, um Quanteneffekte zu übertragen. Damit ist ihnen ein weiterer wichtiger Schritt in Richtung „makroskopische Quantenphysik“ gelungen. Sie berichten darüber in der neuesten Ausgabe der Fachzeitschrift Nature.

Die Quantenphysik ist voll von Paradoxien, die im Widerspruch zu unserer Alltagserfahrung stehen. Aber gelten die Quantengesetze auch für „alltägliche“ Objekte, die sich mit dem bloßen Auge sehen lassen? Diese Frage beschäftigte bereits Physiker wie Erwin Schrödinger seit den Anfängen der Quantentheorie. Die moderne Nano- und Mikrotechnologie lässt mögliche Experimente dazu näher rücken. Seit einigen Jahren wird weltweit intensiv an Quantenexperimenten mit mechanisch schwingenden Objekten geforscht. Solche mechanischen Oszillatoren können von einigen tausendstel Millimetern bis zu mehreren Zentimetern groß sein und wären damit mit Abstand die größten Objekte, an denen die Quantentheorie jemals getestet wurde. Um dies zu erreichen versucht man, die Eigenschaften eines elementaren Quantensystems, z.B. eines einzelnen Elektrons, Atoms oder Photons, auf das makroskopische mechanische Objekt zu übertragen. Das funktioniert allerdings nur, wenn zwei Bedingungen erfüllt sind: der mechanische Oszillator muss bis nahe an den absoluten Temperaturnullpunkt (-273,15°C) gekühlt werden, und die Kraft zwischen mechanischem Oszillator und Elektron, Atom oder Photon muss stark genug sein, um dem natürlichen Zerfall der Quanteneigenschaften, der sogenannten Dekohärenz, entgegenzuwirken. Keine der beiden Bedingungen konnten bislang erfüllt werden. Nun ist es Forschern um Markus Aspelmeyer am Institut für Quantenoptik und Quanteninformation (IQOQI) der Österreichischen Akademie der Wissenschaften (ÖAW) erstmals gelungen, die zweite Bedingung zu erfüllen und die für Quanteneffekte wichtige „starke Kopplung“ zwischen einem mechanischen Objekt und Photonen zu erzeugen. Die Physiker berichten darüber in der neuesten Ausgabe der renommierten Fachzeitschrift Nature.

Gekoppelte Bewegung von Licht und Mechanik
Im Experiment verwenden die Wissenschaftler um Aspelmeyer eine mechanische Brücke, die mit einer Breite von etwa einem zwanzigstel Millimeter (50 Mikrometer) und einer Länge von knapp einem sechstel Millimeter (150 Mikrometer) bereits mit dem bloßen Auge sichtbar ist. Mit Hilfe eines kleinen Spiegels mit einem Durchmesser von 50 Mikrometern, der auf der Brücke befestigt ist, werden Photonen reflektiert und können so eine Kraft auf die mechanische Brücke ausüben (siehe Bild). „Diesen Strahlungsdruck haben wir bereits 2006 verwendet, um erstmals das Prinzip der mechanischen Laserkühlung zu demonstrieren“, sagt Aspelmeyer. „Um nun die erwünschte starke Kopplung zu erzeugen, greifen wir auf eine in der Quantenoptik etablierte Methode zurück, den optischen Resonator: Da die Kraft eines einzelnen Photons nicht stark genug ist, wird das Licht zunächst mit Hilfe eines zweiten Spiegels wieder zurückgeworfen und trägt dadurch mehrmals zum Kraftübertrag bei, bevor es aufgrund der nicht perfekten Verspiegelung zufällig durch einen der beiden Spiegel entkommt.“ Bei zu schwacher Lichteinstrahlung kann es immer noch zu lange dauern, bis genügend Kraft vom Licht zur Mechanik übertragen wird. In diesem Fall überwiegt die Dekohärenz und das Lichtfeld schwingt zwischen den Spiegeln im Wesentlichen unabhängig von der Bewegung der mechanischen Brücke. „Bei starker Lasereinstrahlung ändert sich dies drastisch: Der Kraftübertrag vom Licht auf die Mechanik findet nun rascher statt als Photonen den Spiegelresonator wieder verlassen können, und es kommt zu einer gekoppelten Bewegung des Lichts mit der Mechanik.“
Ein optomechanisches Pendel
„Diese Situation ist analog zu zwei Pendeln, z.B. zweier Standuhren, die entweder mit einem weichen Gummiband oder mit einer starken Feder miteinander verbunden werden“, erklärt Markus Aspelmeyer. „Im ersten Fall schwingen die beiden Pendel unbeeinträchtigt voneinander, im zweiten Fall kommt es aufgrund der ‚starken Kopplung’ der beiden Systeme zu einem völlig neuen, charakteristischen Schwingungsmuster.“ Das Experiment der österreichischen Forscher ist das erste, das diesen Effekt nun zwischen einem massiven mikromechanischen Pendel und einem optischen Lichtfeld erzeugt und beobachtet. Dies war bislang nur mit wenigen Atomen oder winzigen Quantenpunktsystemen möglich. Besonders interessant für spätere Quantenexperimente ist, dass die so erzeugte Schwingung weder rein optisch noch rein mechanisch ist, sondern eine echte optomechanische Anregung darstellt. „Im Energiespektrum des aus dem optischen Resonator austretenden Lichts fanden wir eindeutig die Schwingungsmuster des stark gekoppelten ‚optomechanischen’ Pendels“, freut sich Aspelmeyer. Nach diesem wichtigen Schritt hoffen die Forscher nun, durch zusätzliche Kühlung, wie etwa mit der bereits erfolgreich eingesetzten Laserkühlung, bald auch Quanteneffekte in mechanischen Objekten beobachten zu können: „Das nächste Ziel ist es, diese starke Kopplung mit der Kühlung der Mechanik zu verbinden.“, sagt Simon Gröblacher, Erstautor der Nature-Studie und Doktorand in Aspelmeyers Forscherteam. „Wir stehen mit diesem Experiment an der Schwelle dazu, im Labor überprüfen zu können, wie weit die Gesetze der Quantenphysik auch in unserer Makrowelt Gültigkeit haben.“

Die Forschungsergebnisse sind das Resultat einer fruchtbaren Zusammenarbeit zwischen Experimentalphysikern und Theoretikern am Institut für Quantenoptik und Quanteninformation: Der Innsbrucker Theoretiker Klemens Hammerer unterstützte das Wiener Team um Markus Aspelmeyer bei der Theorie des Experiments und der Interpretation der Daten. Gefördert wurden die Forscher dabei vom österreichischen Wissenschaftsfonds FWF, der Europäischen Kommission und dem Foundational Questions Institute (FQXi).

Der im Vorjahr mit dem START-Preis ausgezeichnete Markus Aspelmeyer hat inzwischen eine weitere Stufe der akademischen Karriereleiter erklommen: Er wurde zum 1. August 2009 als Professor für „Quantum Information on the Nanoscale“ an die Fakultät Physik der Universität Wien berufen.

Publikation: Observation of strong coupling between a micromechanical resonator and an optical cavity field. S. Gröblacher, K. Hammerer, M. R. Vanner, M. Aspelmeyer. Nature 6. 8. 2009. doi:10.1038/nature08171

Kontakt:
Prof. Markus Aspelmeyer
Quantum Optics, Quantum Nanophysics,
Quantum Information
Fakultät für Physik der Universität Wien
Boltzmanngasse 5, A-1090 Wien
Email: markus.aspelmeyer@quantum.at
Tel.: +43 1 4277 29574
Mobil: +43 664 80515 29574
Dr. Christian Flatz
Public Relations
Institut für Quantenoptik und Quanteninformation
Österreichische Akademie der Wissenschaften
Otto-Hittmair-Platz 1, 6020 Innsbruck, Austria
Tel. +43 650 5777122
E-Mail: pr-iqoqi@oeaw.ac.at

Dr. Christian Flatz | IQOQI
Weitere Informationen:
http://www.iqoqi.at/media/download
http://www.iqoqi.at
http://www.quantum.at/aspelmeyer

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht APEX wirft einen Blick ins Herz der Finsternis
25.05.2018 | Max-Planck-Institut für Radioastronomie

nachricht Matrix-Theorie als Ursprung von Raumzeit und Kosmologie
23.05.2018 | Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Starke IT-Sicherheit für das Auto der Zukunft – Forschungsverbund entwickelt neue Ansätze

Je mehr die Elektronik Autos lenkt, beschleunigt und bremst, desto wichtiger wird der Schutz vor Cyber-Angriffen. Deshalb erarbeiten 15 Partner aus Industrie und Wissenschaft in den kommenden drei Jahren neue Ansätze für die IT-Sicherheit im selbstfahrenden Auto. Das Verbundvorhaben unter dem Namen „Security For Connected, Autonomous Cars (SecForCARs) wird durch das Bundesministerium für Bildung und Forschung mit 7,2 Millionen Euro gefördert. Infineon leitet das Projekt.

Bereits heute bieten Fahrzeuge vielfältige Kommunikationsschnittstellen und immer mehr automatisierte Fahrfunktionen, wie beispielsweise Abstands- und...

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Mit Hilfe molekularer Schalter lassen sich künftig neuartige Bauelemente entwickeln

Einem Forscherteam unter Führung von Physikern der Technischen Universität München (TUM) ist es gelungen, spezielle Moleküle mit einer angelegten Spannung zwischen zwei strukturell unterschiedlichen Zuständen hin und her zu schalten. Derartige Nano-Schalter könnten Basis für neuartige Bauelemente sein, die auf Silizium basierende Komponenten durch organische Moleküle ersetzen.

Die Entwicklung neuer elektronischer Technologien fordert eine ständige Verkleinerung funktioneller Komponenten. Physikern der TU München ist es im Rahmen...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: GRACE Follow-On erfolgreich gestartet: Das Satelliten-Tandem dokumentiert den globalen Wandel

Die Satellitenmission GRACE-FO ist gestartet. Am 22. Mai um 21.47 Uhr (MESZ) hoben die beiden Satelliten des GFZ und der NASA an Bord einer Falcon-9-Rakete von der Vandenberg Air Force Base (Kalifornien) ab und wurden in eine polare Umlaufbahn gebracht. Dort nehmen sie in den kommenden Monaten ihre endgültige Position ein. Die NASA meldete 30 Minuten später, dass der Kontakt zu den Satelliten in ihrem Zielorbit erfolgreich hergestellt wurde. GRACE Follow-On wird das Erdschwerefeld und dessen räumliche und zeitliche Variationen sehr genau vermessen. Sie ermöglicht damit präzise Aussagen zum globalen Wandel, insbesondere zu Änderungen im Wasserhaushalt, etwa dem Verlust von Eismassen.

Potsdam, 22. Mai 2018: Die deutsch-amerikanische Satellitenmission GRACE-FO (Gravity Recovery And Climate Experiment Follow On) ist erfolgreich gestartet. Am...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Im Fokus: Klimaangepasste Pflanzen

25.05.2018 | Veranstaltungen

Größter Astronomie-Kongress kommt nach Wien

24.05.2018 | Veranstaltungen

22. Business Forum Qualität: Vom Smart Device bis zum Digital Twin

22.05.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Berufsausbildung mit Zukunft

25.05.2018 | Unternehmensmeldung

Untersuchung der Zellmembran: Forscher entwickeln Stoff, der wichtigen Membranbestandteil nachahmt

25.05.2018 | Interdisziplinäre Forschung

Starke IT-Sicherheit für das Auto der Zukunft – Forschungsverbund entwickelt neue Ansätze

25.05.2018 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics