Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Licht und Mikromechanik im Gleichklang

06.08.2009
Erstmals „starke Kopplung“ zwischen Photonen und mechanischem Objekt erzeugt

Physiker des Instituts für Quantenoptik und Quanteninformation (IQOQI) in Wien und Innsbruck erzeugen erstmals eine Wechselwirkung zwischen Licht und Mikromechanik, die stark genug ist, um Quanteneffekte zu übertragen. Damit ist ihnen ein weiterer wichtiger Schritt in Richtung „makroskopische Quantenphysik“ gelungen. Sie berichten darüber in der neuesten Ausgabe der Fachzeitschrift Nature.

Die Quantenphysik ist voll von Paradoxien, die im Widerspruch zu unserer Alltagserfahrung stehen. Aber gelten die Quantengesetze auch für „alltägliche“ Objekte, die sich mit dem bloßen Auge sehen lassen? Diese Frage beschäftigte bereits Physiker wie Erwin Schrödinger seit den Anfängen der Quantentheorie. Die moderne Nano- und Mikrotechnologie lässt mögliche Experimente dazu näher rücken. Seit einigen Jahren wird weltweit intensiv an Quantenexperimenten mit mechanisch schwingenden Objekten geforscht. Solche mechanischen Oszillatoren können von einigen tausendstel Millimetern bis zu mehreren Zentimetern groß sein und wären damit mit Abstand die größten Objekte, an denen die Quantentheorie jemals getestet wurde. Um dies zu erreichen versucht man, die Eigenschaften eines elementaren Quantensystems, z.B. eines einzelnen Elektrons, Atoms oder Photons, auf das makroskopische mechanische Objekt zu übertragen. Das funktioniert allerdings nur, wenn zwei Bedingungen erfüllt sind: der mechanische Oszillator muss bis nahe an den absoluten Temperaturnullpunkt (-273,15°C) gekühlt werden, und die Kraft zwischen mechanischem Oszillator und Elektron, Atom oder Photon muss stark genug sein, um dem natürlichen Zerfall der Quanteneigenschaften, der sogenannten Dekohärenz, entgegenzuwirken. Keine der beiden Bedingungen konnten bislang erfüllt werden. Nun ist es Forschern um Markus Aspelmeyer am Institut für Quantenoptik und Quanteninformation (IQOQI) der Österreichischen Akademie der Wissenschaften (ÖAW) erstmals gelungen, die zweite Bedingung zu erfüllen und die für Quanteneffekte wichtige „starke Kopplung“ zwischen einem mechanischen Objekt und Photonen zu erzeugen. Die Physiker berichten darüber in der neuesten Ausgabe der renommierten Fachzeitschrift Nature.

Gekoppelte Bewegung von Licht und Mechanik
Im Experiment verwenden die Wissenschaftler um Aspelmeyer eine mechanische Brücke, die mit einer Breite von etwa einem zwanzigstel Millimeter (50 Mikrometer) und einer Länge von knapp einem sechstel Millimeter (150 Mikrometer) bereits mit dem bloßen Auge sichtbar ist. Mit Hilfe eines kleinen Spiegels mit einem Durchmesser von 50 Mikrometern, der auf der Brücke befestigt ist, werden Photonen reflektiert und können so eine Kraft auf die mechanische Brücke ausüben (siehe Bild). „Diesen Strahlungsdruck haben wir bereits 2006 verwendet, um erstmals das Prinzip der mechanischen Laserkühlung zu demonstrieren“, sagt Aspelmeyer. „Um nun die erwünschte starke Kopplung zu erzeugen, greifen wir auf eine in der Quantenoptik etablierte Methode zurück, den optischen Resonator: Da die Kraft eines einzelnen Photons nicht stark genug ist, wird das Licht zunächst mit Hilfe eines zweiten Spiegels wieder zurückgeworfen und trägt dadurch mehrmals zum Kraftübertrag bei, bevor es aufgrund der nicht perfekten Verspiegelung zufällig durch einen der beiden Spiegel entkommt.“ Bei zu schwacher Lichteinstrahlung kann es immer noch zu lange dauern, bis genügend Kraft vom Licht zur Mechanik übertragen wird. In diesem Fall überwiegt die Dekohärenz und das Lichtfeld schwingt zwischen den Spiegeln im Wesentlichen unabhängig von der Bewegung der mechanischen Brücke. „Bei starker Lasereinstrahlung ändert sich dies drastisch: Der Kraftübertrag vom Licht auf die Mechanik findet nun rascher statt als Photonen den Spiegelresonator wieder verlassen können, und es kommt zu einer gekoppelten Bewegung des Lichts mit der Mechanik.“
Ein optomechanisches Pendel
„Diese Situation ist analog zu zwei Pendeln, z.B. zweier Standuhren, die entweder mit einem weichen Gummiband oder mit einer starken Feder miteinander verbunden werden“, erklärt Markus Aspelmeyer. „Im ersten Fall schwingen die beiden Pendel unbeeinträchtigt voneinander, im zweiten Fall kommt es aufgrund der ‚starken Kopplung’ der beiden Systeme zu einem völlig neuen, charakteristischen Schwingungsmuster.“ Das Experiment der österreichischen Forscher ist das erste, das diesen Effekt nun zwischen einem massiven mikromechanischen Pendel und einem optischen Lichtfeld erzeugt und beobachtet. Dies war bislang nur mit wenigen Atomen oder winzigen Quantenpunktsystemen möglich. Besonders interessant für spätere Quantenexperimente ist, dass die so erzeugte Schwingung weder rein optisch noch rein mechanisch ist, sondern eine echte optomechanische Anregung darstellt. „Im Energiespektrum des aus dem optischen Resonator austretenden Lichts fanden wir eindeutig die Schwingungsmuster des stark gekoppelten ‚optomechanischen’ Pendels“, freut sich Aspelmeyer. Nach diesem wichtigen Schritt hoffen die Forscher nun, durch zusätzliche Kühlung, wie etwa mit der bereits erfolgreich eingesetzten Laserkühlung, bald auch Quanteneffekte in mechanischen Objekten beobachten zu können: „Das nächste Ziel ist es, diese starke Kopplung mit der Kühlung der Mechanik zu verbinden.“, sagt Simon Gröblacher, Erstautor der Nature-Studie und Doktorand in Aspelmeyers Forscherteam. „Wir stehen mit diesem Experiment an der Schwelle dazu, im Labor überprüfen zu können, wie weit die Gesetze der Quantenphysik auch in unserer Makrowelt Gültigkeit haben.“

Die Forschungsergebnisse sind das Resultat einer fruchtbaren Zusammenarbeit zwischen Experimentalphysikern und Theoretikern am Institut für Quantenoptik und Quanteninformation: Der Innsbrucker Theoretiker Klemens Hammerer unterstützte das Wiener Team um Markus Aspelmeyer bei der Theorie des Experiments und der Interpretation der Daten. Gefördert wurden die Forscher dabei vom österreichischen Wissenschaftsfonds FWF, der Europäischen Kommission und dem Foundational Questions Institute (FQXi).

Der im Vorjahr mit dem START-Preis ausgezeichnete Markus Aspelmeyer hat inzwischen eine weitere Stufe der akademischen Karriereleiter erklommen: Er wurde zum 1. August 2009 als Professor für „Quantum Information on the Nanoscale“ an die Fakultät Physik der Universität Wien berufen.

Publikation: Observation of strong coupling between a micromechanical resonator and an optical cavity field. S. Gröblacher, K. Hammerer, M. R. Vanner, M. Aspelmeyer. Nature 6. 8. 2009. doi:10.1038/nature08171

Kontakt:
Prof. Markus Aspelmeyer
Quantum Optics, Quantum Nanophysics,
Quantum Information
Fakultät für Physik der Universität Wien
Boltzmanngasse 5, A-1090 Wien
Email: markus.aspelmeyer@quantum.at
Tel.: +43 1 4277 29574
Mobil: +43 664 80515 29574
Dr. Christian Flatz
Public Relations
Institut für Quantenoptik und Quanteninformation
Österreichische Akademie der Wissenschaften
Otto-Hittmair-Platz 1, 6020 Innsbruck, Austria
Tel. +43 650 5777122
E-Mail: pr-iqoqi@oeaw.ac.at

Dr. Christian Flatz | IQOQI
Weitere Informationen:
http://www.iqoqi.at/media/download
http://www.iqoqi.at
http://www.quantum.at/aspelmeyer

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht 3D-Graphen: Experiment an BESSY II zeigt, dass optische Eigenschaften einstellbar sind
24.05.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Hochspannung für den Teilchenbeschleuniger der Zukunft
24.05.2017 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochspannung für den Teilchenbeschleuniger der Zukunft

24.05.2017 | Physik Astronomie

3D-Graphen: Experiment an BESSY II zeigt, dass optische Eigenschaften einstellbar sind

24.05.2017 | Physik Astronomie

Optisches Messverfahren für Zellanalysen in Echtzeit - Ulmer Physiker auf der Messe "Sensor+Test"

24.05.2017 | Messenachrichten