Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Licht auf der Nanoskala schalten

29.01.2016

Experimentalphysiker an der Universität Bayreuth haben ein Verfahren entwickelt, mit dem sich Lichtquellen auf der Nanoskala gezielt ein- und ausschalten lassen. Mögliche Anwendungen reichen von der Datenübertragung bis zum Ausmessen elektronischer Zustände.

Metallische Nanopartikel, die nur wenige Millionstel Millimeter lang sind, können als Basis für Lichtquellen genutzt werden, die sich ähnlich wie die Lichter von Ampeln im Straßenverkehr präzise steuern lassen.


Nanostäbchen als schaltbare blaue Nano-Ampel. Mit Hilfe genau definierter Laserpulse können nur die beiden Enden oder auch nur die Mitte des Stäbchens zum Leuchten gebracht werden.

Grafik: Thorsten Schumacher, Universität Bayreuth; mit Autorangabe zur Veröffentlichung frei.


Daniela Wolf, Dr. Thorsten Schumacher und Prof. Dr. Markus Lippitz im Bayreuther Labor für Nanooptik (v.l.n.r.).

Foto: Chr. Wißler, zur Veröffentlichung frei.

Dies hat ein Forschungsteam um Prof. Dr. Markus Lippitz, Experimentalphysiker an der Universität Bayreuth, herausgefunden. Das hier entwickelte Verfahren macht es erstmals möglich, Lichtquellen auf der Nanoskala gezielt ein- und auszuschalten.

In der Fachzeitschrift „Nature Communications“ wurden diese wegweisenden Forschungsergebnisse kürzlich vorgestellt.

Nanostäbchen aus Gold mit steuerbaren Lichtquellen

In einer Serie von Experimenten haben die Bayreuther Forscher Nanostäbchen aus Gold untersucht. Jedes dieser Stäbchen wurde in seiner vollen Länge wiederholt einer sehr kurzen, aber intensiven Bestrahlung durch Laserlicht ausgesetzt. Die dadurch angeregten Partikel reflektieren dieses Licht – aber so, dass das abgestrahlte Licht nicht überall die gleichen Wellenlängen wie der einfallende Laserstrahl hat.

Wird nämlich ein Nanostäbchen beispielsweise durch rotes Laserlicht angeregt, so strahlt es nicht nur rotes Licht, sondern auch energiereicheres blaues Licht ab. Die Bayreuther Physiker Daniela Wolf und Dr. Thorsten Schumacher konnten zeigen, dass das blaue Licht – im Unterschied zum energieärmeren roten Licht – nicht gleichmäßig vom gesamten untersuchten Nanostäbchen abgestrahlt wird. Es leuchtet vielmehr nur an wenigen und sehr kleinen Stellen des Partikels.

Um diese punktförmigen Emissionszentren zu beobachten, kombinierten die Wissenschaftler ein leistungsstarkes Mikroskop mit einem speziellen Abbildungsverfahren. So fanden sie heraus, dass die Anzahl und die Positionen der Emissionszentren variieren. Sie richten sich nach der Wellenlänge des Laserlichts, mit dem ein Nanostäbchen bestrahlt wird.

Je nach Wellenlänge wird blaues Licht beispielsweise nur an einer einzigen Stelle in der Mitte des Stäbchens oder nur an dessen beiden Enden abgestrahlt. Diese winzigen Lichtquellen können gezielt ein- und ausgeschaltet werden, denn die Wellenlänge des Laserlichts lässt sich mit hoher Genauigkeit steuern. Die Nanostäbchen aus Gold werden so zu kleinen schaltbaren „Nano-Ampeln“.

Anwendungsperspektiven: Von der Datenübertragung bis zum Ausmessen elektronischer Zustände

Prof. Dr. Markus Lippitz, einer der führenden Experten in Deutschland auf dem Gebiet der Nanooptik, sieht in diesen Ergebnissen ein großes Anwendungspotenzial: „Dies ist das erste Mal, dass wir eine Lichtquelle auf der Nanoskala so exakt steuern können.“

Eine mögliche Anwendung einer solchen Nanoampel ist die gezielte Übertragung von Daten mit Licht. Analog zu Mobilfunk- oder Radiosignalen, die mithilfe von Antennen gesendet und empfangen werden, erscheint es jetzt grundsätzlich möglich, Lichtsignale mit der Nanoampel zu übermitteln. Dieses Konzept könnte in Zukunft helfen, elektronische Schaltungen auf Computerplatinen durch schnellere optische Schaltungen zu ersetzen.

Das neue Verfahren, Lichtsignale auf der Nanoskala zu steuern und zu beobachten, ist zudem hervorragend geeignet, die Forschungsarbeiten im Bayreuther DFG-Graduiertenkolleg „Fotophysik synthetischer und biologischer multichromophorer Systeme“ (GRK 1640) zu unterstützen, das kürzlich um weitere vier Jahre verlängert wurde.

Es befasst sich insbesondere mit Photosynthese-Prozessen in der Natur. Das Ziel ist es, die auf der molekularen Skala ablaufende Übertragung von Lichtenergie und deren Umwandlung in chemische Energie genauer zu verstehen und die so gewonnenen Erkenntnisse für neue Energietechnologien zu nutzen.

Die neuen Nanoampeln könnten eingesetzt werden, um elektronische Zustände in Pflanzen und anderen komplexen Systemen auszumessen. Darüber hinaus bieten sie aufgrund ihrer Schaltbarkeit die Möglichkeit, gezielt bestimmte elektronische Zustände zu erzeugen.

Zum Bayreuther Forschungsteam

Die Mitglieder des Bayreuther Forschungsteams, die in „Nature Communications“ über ihre Forschungsergebnisse berichten, haben zuvor schon an der Universität Stuttgart und am Max-Planck-Institut für Festkörperforschung in Stuttgart zusammengearbeitet. Sie sind im Frühjahr 2014 zusammen an die Universität Bayreuth gekommen.

Daniela Wolf ist Doktorandin im oben genannten DFG- Graduiertenkolleg, das als interdisziplinäres Promotionsprogramm der Bayreuther Graduiertenschule für Mathematik und Naturwissenschaften (BayNAT) zugeordnet ist. Thorsten Schumacher hat seine Promotion bereits 2014 mit Auszeichnung abgeschlossen. Seine Arbeit wurde mit dem Emil-Warburg-Forschungspreis ausgezeichnet. Prof. Markus Lippitz leitet an der Universität Bayreuth den Lehrstuhl für Experimentalphysik III seit Februar 2013.

Veröffentlichung:

D. Wolf, T. Schumacher and M. Lippitz, Shaping the nonlinear near field,
in: Nature Communications, 2016 Jan 14; 7:10361.
DOI: 10.1038/ncomms10361.

Kontakt:

Prof. Dr. Markus Lippitz
Experimentalphysik III
Universität Bayreuth
95447 Bayreuth
Tel.: +49 (0) 921 55 3800
Email: markus.lippitz@uni-bayreuth.de

Christian Wißler | Universität Bayreuth
Weitere Informationen:
http://www.uni-bayreuth.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Vorstoß ins Innere der Atome
23.02.2018 | Max-Planck-Institut für Quantenoptik

nachricht Quanten-Wiederkehr: Alles wird wieder wie früher
23.02.2018 | Technische Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics