Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Licht auf der Nanoskala schalten

29.01.2016

Experimentalphysiker an der Universität Bayreuth haben ein Verfahren entwickelt, mit dem sich Lichtquellen auf der Nanoskala gezielt ein- und ausschalten lassen. Mögliche Anwendungen reichen von der Datenübertragung bis zum Ausmessen elektronischer Zustände.

Metallische Nanopartikel, die nur wenige Millionstel Millimeter lang sind, können als Basis für Lichtquellen genutzt werden, die sich ähnlich wie die Lichter von Ampeln im Straßenverkehr präzise steuern lassen.


Nanostäbchen als schaltbare blaue Nano-Ampel. Mit Hilfe genau definierter Laserpulse können nur die beiden Enden oder auch nur die Mitte des Stäbchens zum Leuchten gebracht werden.

Grafik: Thorsten Schumacher, Universität Bayreuth; mit Autorangabe zur Veröffentlichung frei.


Daniela Wolf, Dr. Thorsten Schumacher und Prof. Dr. Markus Lippitz im Bayreuther Labor für Nanooptik (v.l.n.r.).

Foto: Chr. Wißler, zur Veröffentlichung frei.

Dies hat ein Forschungsteam um Prof. Dr. Markus Lippitz, Experimentalphysiker an der Universität Bayreuth, herausgefunden. Das hier entwickelte Verfahren macht es erstmals möglich, Lichtquellen auf der Nanoskala gezielt ein- und auszuschalten.

In der Fachzeitschrift „Nature Communications“ wurden diese wegweisenden Forschungsergebnisse kürzlich vorgestellt.

Nanostäbchen aus Gold mit steuerbaren Lichtquellen

In einer Serie von Experimenten haben die Bayreuther Forscher Nanostäbchen aus Gold untersucht. Jedes dieser Stäbchen wurde in seiner vollen Länge wiederholt einer sehr kurzen, aber intensiven Bestrahlung durch Laserlicht ausgesetzt. Die dadurch angeregten Partikel reflektieren dieses Licht – aber so, dass das abgestrahlte Licht nicht überall die gleichen Wellenlängen wie der einfallende Laserstrahl hat.

Wird nämlich ein Nanostäbchen beispielsweise durch rotes Laserlicht angeregt, so strahlt es nicht nur rotes Licht, sondern auch energiereicheres blaues Licht ab. Die Bayreuther Physiker Daniela Wolf und Dr. Thorsten Schumacher konnten zeigen, dass das blaue Licht – im Unterschied zum energieärmeren roten Licht – nicht gleichmäßig vom gesamten untersuchten Nanostäbchen abgestrahlt wird. Es leuchtet vielmehr nur an wenigen und sehr kleinen Stellen des Partikels.

Um diese punktförmigen Emissionszentren zu beobachten, kombinierten die Wissenschaftler ein leistungsstarkes Mikroskop mit einem speziellen Abbildungsverfahren. So fanden sie heraus, dass die Anzahl und die Positionen der Emissionszentren variieren. Sie richten sich nach der Wellenlänge des Laserlichts, mit dem ein Nanostäbchen bestrahlt wird.

Je nach Wellenlänge wird blaues Licht beispielsweise nur an einer einzigen Stelle in der Mitte des Stäbchens oder nur an dessen beiden Enden abgestrahlt. Diese winzigen Lichtquellen können gezielt ein- und ausgeschaltet werden, denn die Wellenlänge des Laserlichts lässt sich mit hoher Genauigkeit steuern. Die Nanostäbchen aus Gold werden so zu kleinen schaltbaren „Nano-Ampeln“.

Anwendungsperspektiven: Von der Datenübertragung bis zum Ausmessen elektronischer Zustände

Prof. Dr. Markus Lippitz, einer der führenden Experten in Deutschland auf dem Gebiet der Nanooptik, sieht in diesen Ergebnissen ein großes Anwendungspotenzial: „Dies ist das erste Mal, dass wir eine Lichtquelle auf der Nanoskala so exakt steuern können.“

Eine mögliche Anwendung einer solchen Nanoampel ist die gezielte Übertragung von Daten mit Licht. Analog zu Mobilfunk- oder Radiosignalen, die mithilfe von Antennen gesendet und empfangen werden, erscheint es jetzt grundsätzlich möglich, Lichtsignale mit der Nanoampel zu übermitteln. Dieses Konzept könnte in Zukunft helfen, elektronische Schaltungen auf Computerplatinen durch schnellere optische Schaltungen zu ersetzen.

Das neue Verfahren, Lichtsignale auf der Nanoskala zu steuern und zu beobachten, ist zudem hervorragend geeignet, die Forschungsarbeiten im Bayreuther DFG-Graduiertenkolleg „Fotophysik synthetischer und biologischer multichromophorer Systeme“ (GRK 1640) zu unterstützen, das kürzlich um weitere vier Jahre verlängert wurde.

Es befasst sich insbesondere mit Photosynthese-Prozessen in der Natur. Das Ziel ist es, die auf der molekularen Skala ablaufende Übertragung von Lichtenergie und deren Umwandlung in chemische Energie genauer zu verstehen und die so gewonnenen Erkenntnisse für neue Energietechnologien zu nutzen.

Die neuen Nanoampeln könnten eingesetzt werden, um elektronische Zustände in Pflanzen und anderen komplexen Systemen auszumessen. Darüber hinaus bieten sie aufgrund ihrer Schaltbarkeit die Möglichkeit, gezielt bestimmte elektronische Zustände zu erzeugen.

Zum Bayreuther Forschungsteam

Die Mitglieder des Bayreuther Forschungsteams, die in „Nature Communications“ über ihre Forschungsergebnisse berichten, haben zuvor schon an der Universität Stuttgart und am Max-Planck-Institut für Festkörperforschung in Stuttgart zusammengearbeitet. Sie sind im Frühjahr 2014 zusammen an die Universität Bayreuth gekommen.

Daniela Wolf ist Doktorandin im oben genannten DFG- Graduiertenkolleg, das als interdisziplinäres Promotionsprogramm der Bayreuther Graduiertenschule für Mathematik und Naturwissenschaften (BayNAT) zugeordnet ist. Thorsten Schumacher hat seine Promotion bereits 2014 mit Auszeichnung abgeschlossen. Seine Arbeit wurde mit dem Emil-Warburg-Forschungspreis ausgezeichnet. Prof. Markus Lippitz leitet an der Universität Bayreuth den Lehrstuhl für Experimentalphysik III seit Februar 2013.

Veröffentlichung:

D. Wolf, T. Schumacher and M. Lippitz, Shaping the nonlinear near field,
in: Nature Communications, 2016 Jan 14; 7:10361.
DOI: 10.1038/ncomms10361.

Kontakt:

Prof. Dr. Markus Lippitz
Experimentalphysik III
Universität Bayreuth
95447 Bayreuth
Tel.: +49 (0) 921 55 3800
Email: markus.lippitz@uni-bayreuth.de

Christian Wißler | Universität Bayreuth
Weitere Informationen:
http://www.uni-bayreuth.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Vermeintlich junger Stern entpuppt sich als galaktischer Greis
16.01.2017 | Ruhr-Universität Bochum

nachricht Laser-Metronom ermöglicht Rekord-Synchronisation
12.01.2017 | Deutsches Elektronen-Synchrotron DESY

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mit solaren Gebäudehüllen Architektur gestalten

Solarthermie ist in der breiten Öffentlichkeit derzeit durch dunkelblaue, rechteckige Kollektoren auf Hausdächern besetzt. Für ästhetisch hochwertige Architektur werden Technologien benötigt, die dem Architekten mehr Gestaltungsspielraum für Niedrigst- und Plusenergiegebäude geben. Im Projekt »ArKol« entwickeln Forscher des Fraunhofer ISE gemeinsam mit Partnern aktuell zwei Fassadenkollektoren für solare Wärmeerzeugung, die ein hohes Maß an Designflexibilität erlauben: einen Streifenkollektor für opake sowie eine solarthermische Jalousie für transparente Fassadenanteile. Der aktuelle Stand der beiden Entwicklungen wird auf der BAU 2017 vorgestellt.

Im Projekt »ArKol – Entwicklung von architektonisch hoch integrierten Fassadekollektoren mit Heat Pipes« entwickelt das Fraunhofer ISE gemeinsam mit Partnern...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: Mit Bindfaden und Schere - die Chromosomenverteilung in der Meiose

Was einmal fest verbunden war sollte nicht getrennt werden? Nicht so in der Meiose, der Zellteilung in der Gameten, Spermien und Eizellen entstehen. Am Anfang der Meiose hält der ringförmige Proteinkomplex Kohäsin die Chromosomenstränge, auf denen die Bauanleitung des Körpers gespeichert ist, zusammen wie ein Bindfaden. Damit am Ende jede Eizelle und jedes Spermium nur einen Chromosomensatz erhält, müssen die Bindfäden aufgeschnitten werden. Forscher vom Max-Planck-Institut für Biochemie zeigen in der Bäckerhefe wie ein auch im Menschen vorkommendes Kinase-Enzym das Aufschneiden der Kohäsinringe kontrolliert und mit dem Austritt aus der Meiose und der Gametenbildung koordiniert.

Warum sehen Kinder eigentlich ihren Eltern ähnlich? Die meisten Zellen unseres Körpers sind diploid, d.h. sie besitzen zwei Kopien von jedem Chromosom – eine...

Im Focus: Der Klang des Ozeans

Umfassende Langzeitstudie zur Geräuschkulisse im Südpolarmeer veröffentlicht

Fast drei Jahre lang haben AWI-Wissenschaftler mit Unterwasser-Mikrofonen in das Südpolarmeer hineingehorcht und einen „Chor“ aus Walen und Robben vernommen....

Im Focus: Wie man eine 80t schwere Betonschale aufbläst

An der TU Wien wurde eine Alternative zu teuren und aufwendigen Schalungen für Kuppelbauten entwickelt, die nun in einem Testbauwerk für die ÖBB-Infrastruktur umgesetzt wird.

Die Schalung für Kuppelbauten aus Beton ist normalerweise aufwändig und teuer. Eine mögliche kostengünstige und ressourcenschonende Alternative bietet die an...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Aquakulturen und Fangquoten – was hilft gegen Überfischung?

16.01.2017 | Veranstaltungen

14. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

12.01.2017 | Veranstaltungen

Leipziger Biogas-Fachgespräch lädt zum "Branchengespräch Biogas2020+" nach Nossen

11.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Weltweit erste Solarstraße in Frankreich eingeweiht

16.01.2017 | Energie und Elektrotechnik

Proteinforschung: Der Computer als Mikroskop

16.01.2017 | Biowissenschaften Chemie

Vermeintlich junger Stern entpuppt sich als galaktischer Greis

16.01.2017 | Physik Astronomie