Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Licht auf atomaren Dimensionen

26.09.2012
Physikern der Universität Würzburg ist es gelungen, Licht auf einen unvorstellbar kleinen Bereich zu konzentrieren. Geholfen hat ihnen dabei ein Effekt, der auch dann auftritt, wenn Kaffee verschüttet wird.
Sichtbares Licht ist der Teil des elektromagnetischen Spektrums, der für unsere alltägliche Wahrnehmung am wichtigsten ist. Dass unsere Umwelt farbig ist und dass wir diese Farben wahrnehmen können, ist der charakteristischen Wechselwirkung von sichtbaren Photonen mit Materie zu verdanken.

Aus dieser Wechselwirkung lassen sich Rückschlüsse über die Beschaffenheit der Materie ziehen, weswegen die optische Mikroskopie eine herausragende Stellung bei der Erkundung des Nanokosmos einnimmt. Licht spielt außerdem eine wichtige Rolle in der Datenspeicherung, bekannt von DVD und Blue-Ray-Medien, und bei der optischen Datenübertragung und -verarbeitung im Internet.

Auf die räumliche Konzentration kommt es an

In allen genannten Bereichen ist die räumliche Konzentration von sichtbarem Licht auf einem möglichst kleinen Bereich von entscheidender Bedeutung. Je stärker diese Konzentration oder Bündelung des Lichts, beispielsweise in der optischen Mikroskopie, desto höher ist die Auflösung und desto kleiner sind die Strukturen, die sich untersuchen lassen. In der optischen Datenverarbeitung ermöglicht sie eine zunehmende Miniaturisierung und Integration und damit höhere Übertragungsraten.

Künstlerische Darstellung zweier Goldnanostäbchen mit einem stark lokalisierten Lichtfeld im atomar-kleinen Luftspalt.

Grafik: Thorsten Feichtner

„Unglücklicherweise sind der räumlichen Konzentration von Licht im freien Raum durch Beugungseffekte natürliche Grenzen gesetzt“, sagt Professor Bert Hecht. „Beugung begrenzt die räumliche Auflösung in der Mikroskopie und die Speicherdichte optischer Medien, wenn man nur klassische Bauelemente wie Linsen und Spiegel einsetzt.“ Der Physiker und die Mitglieder seiner Arbeitsgruppe am Lehrstuhl für Experimentelle Physik 5 suchen deshalb schon lange nach Wegen, Licht auf möglichst kleine Bereiche zu konzentrieren. Gemeinsam mit Kollegen der Technischen Physik ist ihnen nun ein Durchbruch gelungen.

Mut zur (atomaren) Lücke

„Wir haben es geschafft, Licht mit Hilfe plasmonischer Nanostrukturen auf atomare Dimensionen zu bündeln“, erklärt Hecht. Plasmonische Nanostrukturen: So bezeichnen Physiker Strukturen, in denen frei bewegliche, negativ geladene Elektronen resonante Schwingungen vor dem Hintergrund der positiv geladenen, ortsfesten Atomrümpfen vollführen. Durch diese Schwingung werden an der Oberfläche der Strukturen periodisch wechselnde Ladungsüberschüsse erzeugt, welche ihrerseits wiederum elektrische Wechselfelder erzeugen. „Da diese Wechselfelder mit der optischen Frequenz ihr Vorzeichen wechseln, handelt es sich um oberflächengebundene Lichtfelder“, so der Physiker.

Wie das renommierte Fachblatt „NanoLetters“ in seiner neuesten online-Ausgabe berichtet, konnte die Arbeitsgruppe um Bert Hecht nun erstmals in einem Experiment solche oberflächengebundenen Felder gezielt in der äußerst schmalen Lücke zwischen zwei benachbarten plasmonischen Nanostrukturen aus Gold lokalisieren. Die Lücke hat dabei die kleinstmögliche Breite, die in etwa dem Abstand zweier Atome im Goldkristall entspricht. Das entspricht einem Lichtfleck, der 1000-mal kleiner als die entsprechende Lichtwellenlänge ist.

Die in diesem Experiment benötigten Nanostrukturen haben die Physiker durch einen denkbar simplen Prozess hergestellt. Zum Einsatz kamen chemisch gewachsenen Goldstäbchen, jedes nur etwa 30 Nanometer im Durchmesser und etwa 70 Nanometer lang – ein Nanometer entspricht dem Millionsten Teil eines Millimeters. Diese Stäbchen wurden in Wasser aufgelöst und dann auf einen Glasträger aufgetropft. Durch einen Effekt, wie er auch bei der Bildung von Kaffeerändern auftritt, entstehen durch Selbstorganisation am Tropfenrand unter anderem Paare von seitlich aneinandergelagerten Gold-Nanostäbchen, die sich beim Verdampfen der Flüssigkeit bis auf einen atomar kleinen Spalt angenähert haben.

In ihren Experimenten haben die Würzburger Forscher diese Stäbchenpaare mit weißem Licht beleuchtet und die Farben des gestreuten Lichtes untersucht. Aufgrund der charakteristischen spektralen Lage der Farbanteile im Streulicht konnten die Forscher auf resonante Schwingungszustände der Elektronen und somit auf eine Konzentration des Lichtes im Spalt zwischen den Goldstäbchen zurückschließen.

Mögliche Anwendungen

„So stark konzentrierte Lichtfelder haben eine Vielzahl potenzieller Anwendungen“, erklärt Johannes Kern, Doktorand in der Gruppe von Bert Hecht und Erstautor der Veröffentlichung. „Eine mögliche Weiterentwicklung wäre zum Beispiel optische Mikroskopie oder das Auslesen von Speichermedien mit atomarer Auflösung“. Aber auch in anderen Anwendungsgebieten eröffnen sich neue Möglichkeiten: Die extrem starke Konzentration geht mit einer lokalen Verstärkung der Lichtfelder Hand in Hand, wodurch sich nicht nur der für die Photovoltaik fundamental wichtige Prozess der Absorption von Licht optimieren lässt. Es ließen sich damit auch nichtlineare optische Prozesse erzeugen, die in Zukunft in nano-optischen Schaltkreisen zur Realisierung optischer Einzelphotonentransistoren dienen könnten.

Atomic-scale confinement of resonant optical fields, Johannes Kern , Swen Grossmann , Nadezda V. Tarakina , Tim Häckel , Monika Emmerling , Martin Kamp , Jer-Shing Huang , Paolo Biagioni , Jord Prangsma , and Bert Hecht. Nano Lett., Just Accepted Manuscript, DOI: 10.1021/nl302315g, Publication Date (Web): September 17, 2012

Kontakt

Prof. Dr. Bert Hecht, T: (0931) 31-85863, E-Mail: hecht@physik.uni-wuerzburg.de

Gunnar Bartsch | Uni Würzburg
Weitere Informationen:
http://www.uni-wuerzburg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Freie Elektronen in Sonnen-Protuberanzen untersucht
25.07.2017 | Georg-August-Universität Göttingen

nachricht Magnetische Quantenobjekte im "Nano-Eierkarton": PhysikerInnen bauen künstliche Fallen für Fluxonen
25.07.2017 | Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Navigationssystem der Hirnzellen entschlüsselt

Das menschliche Gehirn besteht aus etwa hundert Milliarden Nervenzellen. Informationen zwischen ihnen werden über ein komplexes Netzwerk aus Nervenfasern übermittelt. Verdrahtet werden die meisten dieser Verbindungen vor der Geburt nach einem genetischen Bauplan, also ohne dass äußere Einflüsse eine Rolle spielen. Mehr darüber, wie das Navigationssystem funktioniert, das die Axone beim Wachstum leitet, haben jetzt Forscher des Karlsruher Instituts für Technologie (KIT) herausgefunden. Das berichten sie im Fachmagazin eLife.

Die Gesamtlänge des Nervenfasernetzes im Gehirn beträgt etwa 500.000 Kilometer, mehr als die Entfernung zwischen Erde und Mond. Damit es beim Verdrahten der...

Im Focus: Kohlenstoff-Nanoröhrchen verwandeln Strom in leuchtende Quasiteilchen

Starke Licht-Materie-Kopplung in diesen halbleitenden Röhrchen könnte zu elektrisch gepumpten Lasern führen

Auch durch Anregung mit Strom ist die Erzeugung von leuchtenden Quasiteilchen aus Licht und Materie in halbleitenden Kohlenstoff-Nanoröhrchen möglich....

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Breitbandlichtquellen mit flüssigem Kern

Jenaer Forschern ist es gelungen breitbandiges Laserlicht im mittleren Infrarotbereich mit Hilfe von flüssigkeitsgefüllten optischen Fasern zu erzeugen. Mit den Fasern lieferten sie zudem experimentelle Beweise für eine neue Dynamik von Solitonen – zeitlich und spektral stabile Lichtwellen – die aufgrund der besonderen Eigenschaften des Flüssigkerns entsteht. Die Ergebnisse der Arbeiten publizierte das Jenaer Wissenschaftler-Team vom Leibniz-Instituts für Photonische Technologien (Leibniz-IPHT), dem Fraunhofer-Insitut für Angewandte Optik und Feinmechanik, der Friedrich-Schiller-Universität Jena und des Helmholtz-Insituts im renommierten Fachblatt Nature Communications.

Aus einem ultraschnellen intensiven Laserpuls, den sie in die Faser einkoppeln, erzeugen die Wissenschaftler ein, für das menschliche Auge nicht sichtbares,...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

10. Uelzener Forum: Demografischer Wandel und Digitalisierung

26.07.2017 | Veranstaltungen

Clash of Realities 2017: Anmeldung jetzt möglich. Internationale Konferenz an der TH Köln

26.07.2017 | Veranstaltungen

2. Spitzentreffen »Industrie 4.0 live«

25.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Blattkäfer: Schon winzige Pestizid-Dosis beeinträchtigt Fortpflanzung

26.07.2017 | Biowissenschaften Chemie

Akute myeloische Leukämie (AML): Neues Medikament steht kurz vor der Zulassung in Europa

26.07.2017 | Biowissenschaften Chemie

Biomarker zeigen Aggressivität des Tumors an

26.07.2017 | Biowissenschaften Chemie