Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Licht auf Abwegen

11.01.2012
Erstmals hat ein internationales Team von Astronomen unter maßgeblicher Beteiligung der Universität Bonn die geheimnisvolle Dunkle Materie im Universum großräumig vermessen. Dabei entdeckten die Wissenschaftler ein riesiges kosmisches Netz aus Dunkler Materie und Galaxien, das eine Fläche von mehr als einer Milliarde Lichtjahre umspannt. Die Ergebnisse sind jetzt auf dem Treffen der Amerikanischen Astronomischen Gesellschaft in Austin/Texas (USA) vorgestellt worden.

Bei der Dunklen Materie handelt es sich um einen mysteriösen „Sternenkitt“, der aufgrund seiner Massenanziehung etwa die Sterne in schnell rotierenden Galaxien zusammenhält. Wäre dies nicht der Fall, müssten die Himmelskörper aufgrund der Fliehkraft auseinanderdriften. Sehen kann man die rätselhafte Substanz jedoch nicht, weil sie kein sichtbares Licht oder andere Strahlung aussendet. Daher erhielt sie auch ihren Namen: Dunkle Materie.

Das internationale Team unter Leitung von Dr. Catherine Heymans (Universität Edinburgh), Prof. Ludovic van Waerbeke (University of British Columbia), Prof. Yannick Mellier (IAP Paris) und Dr. Thomas Erben (Universität Bonn) hat erstmals die Verteilung der Dunklen Materie über große Bereiche des Himmels vermessen. Die Wissenschaftler präsentierten jetzt auf einem Treffen der Amerikanischen Astronomischen Gesellschaft in Austin/Texas (USA) erste Ergebnisse dieses umfangreichen Projekts zur direkten Kartographie der Materie unseres Universums.

„Die Beobachtungen bestätigen die Resultate aus numerischen Simulationen“, sagt Dr. Thomas Erben vom Argelander-Institut für Astronomie der Universität Bonn. „Die dunkle Materie bildet ein weitverzweigtes »kosmisches Netz«.“ An den Knotenpunkten dieses Netzes befinden sich die massereichsten Objekte im Universum, die Galaxienhaufen. „Die räumliche Verteilung der Dunklen Materie liefert den Ausgangspunkt für das Verständnis ihrer physikalischen Natur“, sagt Dr. Erben.

Forscher nutzen den Gravitationslinseneffekt

Um der unsichtbaren Dunklen Materie auf die Spur zu kommen, bedienten sich die Forscher des Gravitationslinseneffektes, der auf Albert Einsteins allgemeiner Relativitätstheorie beruht. Einstein erkannte, dass die Raumzeit durch große Massen verbogen wird, wodurch Licht oder andere Strahlen scheinbar wie durch eine Linse abgelenkt werden – gewissermaßen Licht auf Abwegen. Da die Dunkle Materie über eine große Massenanziehung verfügt, macht sie sich durch die Verkrümmung von Lichtstrahlen anderer Himmelsobjekte – etwa von weit entfernten Milchstraßen – bemerkbar. „Eine systematische Analyse des Linseneffekts auf großräumigen Skalen erlaubt uns somit direkte Rückschlüsse auf die Materieverteilung“, sagt Dr. Erben. „Es ist faszinierend, die Dunkle Materie mit Hilfe der Raumkrümmung direkt »sehen« zu können'', sagt Prof. van Waerbeke.

Teleskop in 4.200 Metern Höhe auf Hawaii

Die Forschungsarbeiten zum Projekt „Canada France Hawaii Telescope Lensing Survey“ (CFHTLenS) nutzen Daten, die über fünf Jahre am Canada-France-Hawaii Teleskop aufgenommen wurden. Es befindet sich in 4.200 Meter auf dem Mauna Kea auf Hawai und empfängt optisches sowie Infrarot-Licht. „Diese Himmelsdurchmusterung hat einen Gesamtumfang von rund 700 mal der Fläche des Vollmonds und erforderte umfangreiche Analysen von etwa sieben Millionen Galaxien in verschiedenen Farbfiltern“, erläutert Dr. Erben.

Das Argelander-Institut für Astronomie war im CFHTLenS-Projekt federführend in der Bildbearbeitung. Unter Leitung von Dr. Thomas Erben wurde innerhalb der Forschergruppe von Prof. Dr. Peter Schneider die riesige Datenmenge von rund 20 Terabyte in fünfjähriger Arbeit analysiert. Dies entspricht dem Speichervermögen von rund 4.000 DVDs.

Noch umfangreicheres Projekt hat bereits begonnen

Die nun erfolgte großräumige Kartierung der Dunklen Materie im Universum ist nur ein erster Schritt. „Dieser bisher einzigartige Datensatz erlaubt detaillierte Schlussfolgerungen über die Expansionsgeschichte unseres Universums und die Massenverteilung von Galaxien'', kommentiert Dr. Erben. Dadurch kann zum Beispiel die mittlere Dichte der Dunklen Materie im Universum bestimmt werden.

Ein noch umfangreicheres Nachfolgeprojekt wurde im September 2011 begonnen. Mit dem neu errichteten VLT Survey Telescope der Europäischen Südsternwarte in Chile soll innerhalb von drei Jahren eine etwa zehn Mal größere Region des Himmels als im CFHTLenS-Projekt untersucht werden. Auch bei diesem internationalen Projekt ist die Bonner Gruppe führend beteiligt. „Dieser Kilo Degree Survey wird eine völlig neuartige Qualität für die Untersuchung der Beziehungen zwischen der Dunklen Materie und den sichtbaren Galaxien im Universum bieten'', erwartet Dr. Peter Schneider, Professor am Argelander-Institut für Astronomie der Universität Bonn.

Kontakt:

Dr. Thomas Erben
Argelander-Institut für Astronomie
Tel. 0228/733646
E-Mail: terben@astro.uni-bonn.de
Prof. Dr. Peter Schneider
Argelander-Institut für Astronomie
Tel. 0228/733671 oder 733676
E-Mail: peter@astro.uni-bonn.de

Johannes Seiler | idw
Weitere Informationen:
http://www.uni-bonn.de

Weitere Berichte zu: Astronomie Dunkle Materie Einstein Galaxie Massenanziehung Materie Universum

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau
17.11.2017 | Universität Ulm

nachricht Zwei verdächtigte Sterne unschuldig an mysteriösem Antiteilchen-Überschuss
17.11.2017 | Max-Planck-Institut für Kernphysik

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Im Focus: «Kosmische Schlange» lässt die Struktur von fernen Galaxien erkennen

Die Entstehung von Sternen in fernen Galaxien ist noch weitgehend unerforscht. Astronomen der Universität Genf konnten nun erstmals ein sechs Milliarden Lichtjahre entferntes Sternensystem genauer beobachten – und damit frühere Simulationen der Universität Zürich stützen. Ein spezieller Effekt ermöglicht mehrfach reflektierte Bilder, die sich wie eine Schlange durch den Kosmos ziehen.

Heute wissen Astronomen ziemlich genau, wie sich Sterne in der jüngsten kosmischen Vergangenheit gebildet haben. Aber gelten diese Gesetzmässigkeiten auch für...

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Pflanzenvielfalt von Wäldern aus der Luft abbilden

Produktivität und Stabilität von Waldökosystemen hängen stark von der funktionalen Vielfalt der Pflanzengemeinschaften ab. UZH-Forschenden gelang es, die Pflanzenvielfalt von Wäldern durch Fernerkundung mit Flugzeugen in verschiedenen Massstäben zu messen und zu kartieren – von einzelnen Bäumen bis hin zu ganzen Artengemeinschaften. Die neue Methode ebnet den Weg, um zukünftig die globale Pflanzendiversität aus der Luft und aus dem All zu überwachen.

Ökologische Studien zeigen, dass die Pflanzenvielfalt zentral ist für das Funktionieren von Ökosys-temen. Wälder mit einer höheren funktionalen Vielfalt –...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungen

Roboter für ein gesundes Altern: „European Robotics Week 2017“ an der Frankfurt UAS

17.11.2017 | Veranstaltungen

Börse für Zukunftstechnologien – Leichtbautag Stade bringt Unternehmen branchenübergreifend zusammen

17.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungsnachrichten

IHP präsentiert sich auf der productronica 2017

17.11.2017 | Messenachrichten

Roboter schafft den Salto rückwärts

17.11.2017 | Innovative Produkte