Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Leuchtspuren verraten Ordnung im Chaos - Fundamentale Theorie erstmals experimentell bestätigt

19.10.2011
Das sogenannte Ergodentheorem ist ein fundamentales naturwissenschaftliches Prinzip: Es besagt, dass sich in physikalischen Systemen alle Einzelteilchen genauso „chaotisch“ verhalten wie das gesamte Ensemble – vom Verhalten des Einzelnen also auf das Ganze geschlossen werden kann. Obwohl dieses Prinzip weitreichende Konsequenzen hat, war es bisher ein reines Gedankengebäude.

Professor Christoph Bräuchle und seinem Team vom Department Chemie der Ludwig-Maximilians-Universität (LMU) München gelang es nun gemeinsam mit Professor Jörg Kärger und dessen Arbeitsgruppe (Universität Leipzig) zum ersten Mal, durch die Messung des Diffusionsverhaltens einzelner Moleküle sowie ganzer Molekülensembles im selben System das Ergodentheorem experimentell zu bestätigen.

Dazu nutzten die Forscher an der LMU fluoreszierende Moleküle, deren "Leuchtspuren" den Weg jedes einzelnen Moleküls genau nachzeichneten, während die Leipziger Gruppe das entsprechende Molekülensemble untersuchte. „Nun wird es sehr interessant, Systeme genauer zu untersuchen, die sich nicht entsprechend des Ergodentheorems verhalten und herauszufinden, aus welchen Gründen das nicht der Fall ist“, sagt Bräuchle.

Diffusion ist die durch thermische Energie – das heißt Wärme – ausgelöste zufällige Bewegung von Teilchen, etwa von Atomen und Molekülen. Dieser physikalische Prozess ist essenziell für unzählige Abläufe in der Natur, aber auch für viele technische Verfahren. Bei fast jeder chemischen Reaktion ist Diffusion der entscheidende Mechanismus, damit sich die potenziellen Reaktionspartner überhaupt nahe genug kommen, um miteinander zu reagieren. Das Ergodentheorem ist für die dynamischen Prozesse der Diffusion ein allgemein anerkanntes zentrales Prinzip: Es besagt, dass die häufig wiederholte Messung einer Beobachtungsgröße - wie etwa der pro Zeiteinheit zurückgelegten Wegstrecke - an einem einzelnen Teilchen zum selben Mittelwert führt wie die gleichzeitige Messung dieser Größe an vielen Teilchen - zumindest, wenn sich die Systeme im Gleichgewicht befinden. „Obwohl bereits seit 150 Jahren Diffusionsmessungen durchgeführt werden, konnte das Ergodenprinzip bisher noch nicht experimentell überprüft werden“, erklärt Kärger. Dies lag daran, dass bisher Diffusionsmessungen nur als Ensemblemessungen – das heißt als gleichzeitige Messung vieler Teilchen – durchgeführt werden konnten. Eine wichtige Methode dazu ist die Pulsgradientenmethode der NMR (Kern-Spin-Resonanz), für deren Einsatz die Arbeitsgruppe von Kärger bekannt ist. Der konkrete Diffusionsweg eines einzelnen Teilchens dagegen entzog sich bisher den Beobachtungsmöglichkeiten der Wissenschaftler. „Mit der Entwicklung der Einzelmolekülspektroskopie und –mikroskopie können inzwischen aber auch die Spuren – und damit das Diffusionsverhalten - einzelner Moleküle untersucht werden“, erklärt Bräuchle. Bei den optischen Einzelmolekülmethoden wird das Molekül über seine Fluoreszenz beobachtbar und kann anhand seiner „leuchtenden Spuren“ bis auf wenige Nanometer genau lokalisiert und verfolgt werden.

Eine weitere Schwierigkeit bestand jedoch darin, dass beide Methoden sehr gegensätzliche Bedingungen für erfolgreiche Messungen erfordern. So sind für die NMR-Messungen hohe Konzentrationen und große Diffusionskoeffizienten der Moleküle erforderlich, während die Einzelmolekülspektroskopie extrem geringe Konzentrationen und kleine Diffusionskoeffizienten erfordert. Durch die Verwendung spezieller organischer Farbstoffmoleküle mit guter Fluoreszenz, die als Gastmoleküle in porösen Gläsern mit nanometergroßen Poren diffundieren, konnten die Forscher das Problem lösen und mit beiden Messmethoden unter gleichen Bedingungen sowohl Einzelmolekülmessungen als auch Ensemblemessungen durchführen.

Auf diese Weise gelang den Forschern der Nachweis, dass die durch die verschiedenen Methoden erhaltenen Diffusionskoeffizienten und damit das Diffusionsverhalten übereinstimmt – die erste experimentelle Bestätigung des Ergodentheorems in diesem Bereich. Als nächsten Schritt wollen die Wissenschaftler solche Systeme genauer untersuchen, in denen das Ergodentheorem nicht gilt. „Die Diffusion von Nanoteilchen in Zellen scheint solch ein interessanter Fall zu sein“, sagt Bräuchle, „für uns ist es wichtig herauszufinden, aus welchen Gründen das Ergodentheorem hier nicht greift“.

Das Projekt wurde in München im Rahmen des Exzellenzclusters „Nanosystems Initiative Munich“ (NIM) sowie über den Sonderforschungsbereich 749 (Dynamik und Intermediate molekularer Transformationen) und durch das FOR 877 in Leipzig (From local constraints to macroscopic transport) von der Deutschen Forschungsgemeinschaft (DFG) gefördert. (göd)

Publikation:
Single-particle and ensemble diffusivities - Test of ergodicity
F. Feil, S. Naumov, J. Michaelis, R. Valiullin, D. Enke, J. Kärger, C. Bräuchle
Angewandte Chemie/International Edition Angewandte Chemie, Online Publication 14.October 2011

DOI: 10.1002/ange.201105388

Ansprechpartner:
Prof. Dr. Christoph Bräuchle
Department Chemie
Lehrstuhl Physikalische Chemie I
Tel.: 089/2180-77549
Fax: 089/2180-77550

Luise Dirscherl | idw
Weitere Informationen:
http://www.uni-muenchen.de/
http://www.cup.uni-muenchen.de/pc/braeuchle/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Forschung in Rekordzeit zum Planeten TRAPPIST-1h
23.05.2017 | Universität Bern

nachricht Tumult im trägen Elektronen-Dasein
23.05.2017 | Max-Planck-Institut für Quantenoptik

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Im Focus: Neuer Ionisationsweg in molekularem Wasserstoff identifiziert

„Wackelndes“ Molekül schüttelt Elektron ab

Wie reagiert molekularer Wasserstoff auf Beschuss mit intensiven ultrakurzen Laserpulsen? Forscher am Heidelberger MPI für Kernphysik haben neben bekannten...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Aachener Werkzeugmaschinen-Kolloquium 2017: Internet of Production für agile Unternehmen

23.05.2017 | Veranstaltungen

14. Dortmunder MST-Konferenz zeigt individualisierte Gesundheitslösungen mit Mikro- und Nanotechnik

22.05.2017 | Veranstaltungen

Branchentreff für IT-Entscheider - Rittal Praxistage IT in Stuttgart und München

22.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

WHZ erhält hochmodernen Prüfkomplex für Schraubenverbindungen

23.05.2017 | Maschinenbau

«Schwangere» Stubenfliegenmännchen zeigen Evolution der Geschlechtsbestimmung

23.05.2017 | Biowissenschaften Chemie

Tumult im trägen Elektronen-Dasein

23.05.2017 | Physik Astronomie