Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Leuchtspuren verraten Ordnung im Chaos - Fundamentale Theorie erstmals experimentell bestätigt

19.10.2011
Das sogenannte Ergodentheorem ist ein fundamentales naturwissenschaftliches Prinzip: Es besagt, dass sich in physikalischen Systemen alle Einzelteilchen genauso „chaotisch“ verhalten wie das gesamte Ensemble – vom Verhalten des Einzelnen also auf das Ganze geschlossen werden kann. Obwohl dieses Prinzip weitreichende Konsequenzen hat, war es bisher ein reines Gedankengebäude.

Professor Christoph Bräuchle und seinem Team vom Department Chemie der Ludwig-Maximilians-Universität (LMU) München gelang es nun gemeinsam mit Professor Jörg Kärger und dessen Arbeitsgruppe (Universität Leipzig) zum ersten Mal, durch die Messung des Diffusionsverhaltens einzelner Moleküle sowie ganzer Molekülensembles im selben System das Ergodentheorem experimentell zu bestätigen.

Dazu nutzten die Forscher an der LMU fluoreszierende Moleküle, deren "Leuchtspuren" den Weg jedes einzelnen Moleküls genau nachzeichneten, während die Leipziger Gruppe das entsprechende Molekülensemble untersuchte. „Nun wird es sehr interessant, Systeme genauer zu untersuchen, die sich nicht entsprechend des Ergodentheorems verhalten und herauszufinden, aus welchen Gründen das nicht der Fall ist“, sagt Bräuchle.

Diffusion ist die durch thermische Energie – das heißt Wärme – ausgelöste zufällige Bewegung von Teilchen, etwa von Atomen und Molekülen. Dieser physikalische Prozess ist essenziell für unzählige Abläufe in der Natur, aber auch für viele technische Verfahren. Bei fast jeder chemischen Reaktion ist Diffusion der entscheidende Mechanismus, damit sich die potenziellen Reaktionspartner überhaupt nahe genug kommen, um miteinander zu reagieren. Das Ergodentheorem ist für die dynamischen Prozesse der Diffusion ein allgemein anerkanntes zentrales Prinzip: Es besagt, dass die häufig wiederholte Messung einer Beobachtungsgröße - wie etwa der pro Zeiteinheit zurückgelegten Wegstrecke - an einem einzelnen Teilchen zum selben Mittelwert führt wie die gleichzeitige Messung dieser Größe an vielen Teilchen - zumindest, wenn sich die Systeme im Gleichgewicht befinden. „Obwohl bereits seit 150 Jahren Diffusionsmessungen durchgeführt werden, konnte das Ergodenprinzip bisher noch nicht experimentell überprüft werden“, erklärt Kärger. Dies lag daran, dass bisher Diffusionsmessungen nur als Ensemblemessungen – das heißt als gleichzeitige Messung vieler Teilchen – durchgeführt werden konnten. Eine wichtige Methode dazu ist die Pulsgradientenmethode der NMR (Kern-Spin-Resonanz), für deren Einsatz die Arbeitsgruppe von Kärger bekannt ist. Der konkrete Diffusionsweg eines einzelnen Teilchens dagegen entzog sich bisher den Beobachtungsmöglichkeiten der Wissenschaftler. „Mit der Entwicklung der Einzelmolekülspektroskopie und –mikroskopie können inzwischen aber auch die Spuren – und damit das Diffusionsverhalten - einzelner Moleküle untersucht werden“, erklärt Bräuchle. Bei den optischen Einzelmolekülmethoden wird das Molekül über seine Fluoreszenz beobachtbar und kann anhand seiner „leuchtenden Spuren“ bis auf wenige Nanometer genau lokalisiert und verfolgt werden.

Eine weitere Schwierigkeit bestand jedoch darin, dass beide Methoden sehr gegensätzliche Bedingungen für erfolgreiche Messungen erfordern. So sind für die NMR-Messungen hohe Konzentrationen und große Diffusionskoeffizienten der Moleküle erforderlich, während die Einzelmolekülspektroskopie extrem geringe Konzentrationen und kleine Diffusionskoeffizienten erfordert. Durch die Verwendung spezieller organischer Farbstoffmoleküle mit guter Fluoreszenz, die als Gastmoleküle in porösen Gläsern mit nanometergroßen Poren diffundieren, konnten die Forscher das Problem lösen und mit beiden Messmethoden unter gleichen Bedingungen sowohl Einzelmolekülmessungen als auch Ensemblemessungen durchführen.

Auf diese Weise gelang den Forschern der Nachweis, dass die durch die verschiedenen Methoden erhaltenen Diffusionskoeffizienten und damit das Diffusionsverhalten übereinstimmt – die erste experimentelle Bestätigung des Ergodentheorems in diesem Bereich. Als nächsten Schritt wollen die Wissenschaftler solche Systeme genauer untersuchen, in denen das Ergodentheorem nicht gilt. „Die Diffusion von Nanoteilchen in Zellen scheint solch ein interessanter Fall zu sein“, sagt Bräuchle, „für uns ist es wichtig herauszufinden, aus welchen Gründen das Ergodentheorem hier nicht greift“.

Das Projekt wurde in München im Rahmen des Exzellenzclusters „Nanosystems Initiative Munich“ (NIM) sowie über den Sonderforschungsbereich 749 (Dynamik und Intermediate molekularer Transformationen) und durch das FOR 877 in Leipzig (From local constraints to macroscopic transport) von der Deutschen Forschungsgemeinschaft (DFG) gefördert. (göd)

Publikation:
Single-particle and ensemble diffusivities - Test of ergodicity
F. Feil, S. Naumov, J. Michaelis, R. Valiullin, D. Enke, J. Kärger, C. Bräuchle
Angewandte Chemie/International Edition Angewandte Chemie, Online Publication 14.October 2011

DOI: 10.1002/ange.201105388

Ansprechpartner:
Prof. Dr. Christoph Bräuchle
Department Chemie
Lehrstuhl Physikalische Chemie I
Tel.: 089/2180-77549
Fax: 089/2180-77550

Luise Dirscherl | idw
Weitere Informationen:
http://www.uni-muenchen.de/
http://www.cup.uni-muenchen.de/pc/braeuchle/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Waschen für die Mikrowelt – Potsdamer Physiker entwickeln lichtempfindliche Seife
02.12.2016 | Universität Potsdam

nachricht Quantenreibung: Jenseits der Näherung des lokalen Gleichgewichts
01.12.2016 | Forschungsverbund Berlin e.V.

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie