Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Leuchtender Zufall

26.09.2016

Es galt als kaum erreichbares Ziel in der Laserforschung: Gebündeltes Licht im Terahertz-Bereich, das aus vielen verschiedenen Wellenlängen besteht. An der TU Wien gelang nun eine erste Umsetzung mit einem überraschenden Trick.

Terahertzwellen sind zwar schwer herzustellen, aber sie sind äußerst nützlich. Man kann sie zum Beispiel für chemische Sensoren verwenden, die ganz bestimmte Stoffe detektieren. Dafür müssen sie allerdings zwei wichtige Anforderungen erfüllen: Erstens muss der Terahertz-Lichtstrahl eng gebündelt sein, damit man ihn gezielt an den gewünschten Ort lenken kann, und zweitens darf er nicht wie gewöhnliches Laserlicht bloß eine einzelne Wellenlänge aufweisen, sondern sollte aus vielen verschiedenen Wellenlängen zusammengesetzt sein. Beides gleichzeitig zu erreichen war bisher kaum möglich. An der TU Wien gelang es nun mit einem ungewöhnlichen Trick erstmals einen gebündelten Terahertz-Laser mit Breitband-Spektrum herzustellen: Durch zufällig angeordnete Löcher im aktiven Lasermedium.


Zufallslaser mit Mikro-Löchern

TU Wien


Karl Unterrainer, Sebastian Schönhuber, Michael Krall und Stefan Rotter (v.l.n.r.)

TU Wien

Den Zufall mit einbauen

„Wir beschäftigen uns mit zwei unterschiedlichen Arten von Lasern, die auf den ersten Blick wenig miteinander zu tun haben“, sagt Sebastian Schönhuber vom Institut für Photonik (Fakultät für Elektrotechnik) der TU Wien. „Einerseits forschen wir an Quantenkaskadenlasern, die aus genau aufeinander abgestimmten dünnen Halbleiterschichten bestehen, andererseits haben wir uns in unserem aktuellen Projekt auch mit Zufallslasern beschäftigt.“

Quantenkaskadenlaser werden an der TU Wien bereits seit Jahren entwickelt. Sie bestehen aus einem ausgeklügelten Halbleiter-Schichtsystem. Schon bei der Konstruktion des Lasers kann man dadurch genau festlegen, welche Wellenlängen das abgestrahlte Licht haben soll. Allerdings senden Quantenkaskadenlaser ihr Licht nicht in eine bestimmte Richtung, sondern sie strahlen für gewöhnlich einen breiten Lichtkegel ab. Dieses Licht danach wieder auf einen engen Strahl zu fokussieren ist kaum möglich.

Ein ähnliches Problem hat man bei den sogenannten Zufallslasern - einem völlig anderen und recht neuen Konzept der Lasertechnik. „Zufallslaser bestehen typischerweise aus Pulvern oder Flüssigkeiten, die das Licht erzeugen und es dann gleichzeitig in ihrem Inneren immer wieder zufällig streuen“, erklärt Stefan Rotter vom Institut für Theoretische Physik. So bewegen sich die Lichtwellen auf ungeordnete, schwer vorhersehbare Weise durch den Laser. Das kann dazu führen, dass viele unterschiedliche Wellenlängen gleichzeitig abgestrahlt werden – allerdings in alle Richtungen gleichzeitig, ähnlich wie bei einer Glühbirne.

Zufällige Löcher, wie im Schweizer Käse

In einem Forschungsprojekt, in dem die beiden TU-Forschungsgruppen aus der Elektrotechnik und aus der Physik zusammenarbeiteten, wurde nun beides miteinander verknüpft: An zufällig ausgewählten Positionen wurden Löcher in einen Quantenkaskadenlaser gebohrt, somit wurde er zum Zufallslaser. Der zunächst überraschende Nebeneffekt dieses neuen Konzepts: Der durchlöcherte Laser sendet seine Strahlung direkt nach oben, in Form eines sehr eng gebündelten Strahls.

„Diesen Effekt im Detail zu erklären, war zunächst gar nicht einfach“, sagt Martin Brandstetter vom Institut für Photonik. „Es liegt an der Art, wie sich die einzelnen Wellenlängen zu einem Strahl addieren. Einzelne Frequenzanteile können in verschiedene Richtungen ausgesandt werden, aber insgesamt ist der Strahl eng fokussiert. Er zeigt genau in die Richtung, in der man die Löcher in den Quantenkaskadenlaser gebohrt hat.“

Damit steht nun erstmals ein Laser zur Verfügung, der einerseits breitbandige Teraherzstrahlung aus vielen unterschiedlichen Wellenlängen absendet und andererseits seine Strahlung in eine genau definierte Richtung abgibt – ein wichtiger Schritt für die Anwendung von Zufallslasern in der Praxis. Nun möchte man an der TU Wien noch einen Schritt weitergehen: „Wir wollen eine noch größere spektrale Bandbreite erreichen. Dadurch sollen neue Anwendungen in der Spektroskopie und bei bildgebenden Verfahren in diesem hochinteressanten aber technisch herausfordernden Bereich der Terahertzstrahlung möglich werden“, ist Sebastian Schönhuber zuversichtlich.

Rückfragehinweis:
Dipl.-Ing. Sebastian Schönhuber
Institut für Photonik
Technische Universität Wien
Gußhausstraße 27-29, 1040 Wien
T: +43-1-58801-38721
sebastian.schoenhuber@tuwien.ac.at

Dr. Florian Aigner | Technische Universität Wien
Weitere Informationen:
http://www.tuwien.ac.at

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Proteintransport - Stau in der Zelle
24.03.2017 | Ludwig-Maximilians-Universität München

nachricht Neuartige Halbleiter-Membran-Laser
22.03.2017 | Universität Stuttgart

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise