Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Leuchtender Zufall

26.09.2016

Es galt als kaum erreichbares Ziel in der Laserforschung: Gebündeltes Licht im Terahertz-Bereich, das aus vielen verschiedenen Wellenlängen besteht. An der TU Wien gelang nun eine erste Umsetzung mit einem überraschenden Trick.

Terahertzwellen sind zwar schwer herzustellen, aber sie sind äußerst nützlich. Man kann sie zum Beispiel für chemische Sensoren verwenden, die ganz bestimmte Stoffe detektieren. Dafür müssen sie allerdings zwei wichtige Anforderungen erfüllen: Erstens muss der Terahertz-Lichtstrahl eng gebündelt sein, damit man ihn gezielt an den gewünschten Ort lenken kann, und zweitens darf er nicht wie gewöhnliches Laserlicht bloß eine einzelne Wellenlänge aufweisen, sondern sollte aus vielen verschiedenen Wellenlängen zusammengesetzt sein. Beides gleichzeitig zu erreichen war bisher kaum möglich. An der TU Wien gelang es nun mit einem ungewöhnlichen Trick erstmals einen gebündelten Terahertz-Laser mit Breitband-Spektrum herzustellen: Durch zufällig angeordnete Löcher im aktiven Lasermedium.


Zufallslaser mit Mikro-Löchern

TU Wien


Karl Unterrainer, Sebastian Schönhuber, Michael Krall und Stefan Rotter (v.l.n.r.)

TU Wien

Den Zufall mit einbauen

„Wir beschäftigen uns mit zwei unterschiedlichen Arten von Lasern, die auf den ersten Blick wenig miteinander zu tun haben“, sagt Sebastian Schönhuber vom Institut für Photonik (Fakultät für Elektrotechnik) der TU Wien. „Einerseits forschen wir an Quantenkaskadenlasern, die aus genau aufeinander abgestimmten dünnen Halbleiterschichten bestehen, andererseits haben wir uns in unserem aktuellen Projekt auch mit Zufallslasern beschäftigt.“

Quantenkaskadenlaser werden an der TU Wien bereits seit Jahren entwickelt. Sie bestehen aus einem ausgeklügelten Halbleiter-Schichtsystem. Schon bei der Konstruktion des Lasers kann man dadurch genau festlegen, welche Wellenlängen das abgestrahlte Licht haben soll. Allerdings senden Quantenkaskadenlaser ihr Licht nicht in eine bestimmte Richtung, sondern sie strahlen für gewöhnlich einen breiten Lichtkegel ab. Dieses Licht danach wieder auf einen engen Strahl zu fokussieren ist kaum möglich.

Ein ähnliches Problem hat man bei den sogenannten Zufallslasern - einem völlig anderen und recht neuen Konzept der Lasertechnik. „Zufallslaser bestehen typischerweise aus Pulvern oder Flüssigkeiten, die das Licht erzeugen und es dann gleichzeitig in ihrem Inneren immer wieder zufällig streuen“, erklärt Stefan Rotter vom Institut für Theoretische Physik. So bewegen sich die Lichtwellen auf ungeordnete, schwer vorhersehbare Weise durch den Laser. Das kann dazu führen, dass viele unterschiedliche Wellenlängen gleichzeitig abgestrahlt werden – allerdings in alle Richtungen gleichzeitig, ähnlich wie bei einer Glühbirne.

Zufällige Löcher, wie im Schweizer Käse

In einem Forschungsprojekt, in dem die beiden TU-Forschungsgruppen aus der Elektrotechnik und aus der Physik zusammenarbeiteten, wurde nun beides miteinander verknüpft: An zufällig ausgewählten Positionen wurden Löcher in einen Quantenkaskadenlaser gebohrt, somit wurde er zum Zufallslaser. Der zunächst überraschende Nebeneffekt dieses neuen Konzepts: Der durchlöcherte Laser sendet seine Strahlung direkt nach oben, in Form eines sehr eng gebündelten Strahls.

„Diesen Effekt im Detail zu erklären, war zunächst gar nicht einfach“, sagt Martin Brandstetter vom Institut für Photonik. „Es liegt an der Art, wie sich die einzelnen Wellenlängen zu einem Strahl addieren. Einzelne Frequenzanteile können in verschiedene Richtungen ausgesandt werden, aber insgesamt ist der Strahl eng fokussiert. Er zeigt genau in die Richtung, in der man die Löcher in den Quantenkaskadenlaser gebohrt hat.“

Damit steht nun erstmals ein Laser zur Verfügung, der einerseits breitbandige Teraherzstrahlung aus vielen unterschiedlichen Wellenlängen absendet und andererseits seine Strahlung in eine genau definierte Richtung abgibt – ein wichtiger Schritt für die Anwendung von Zufallslasern in der Praxis. Nun möchte man an der TU Wien noch einen Schritt weitergehen: „Wir wollen eine noch größere spektrale Bandbreite erreichen. Dadurch sollen neue Anwendungen in der Spektroskopie und bei bildgebenden Verfahren in diesem hochinteressanten aber technisch herausfordernden Bereich der Terahertzstrahlung möglich werden“, ist Sebastian Schönhuber zuversichtlich.

Rückfragehinweis:
Dipl.-Ing. Sebastian Schönhuber
Institut für Photonik
Technische Universität Wien
Gußhausstraße 27-29, 1040 Wien
T: +43-1-58801-38721
sebastian.schoenhuber@tuwien.ac.at

Dr. Florian Aigner | Technische Universität Wien
Weitere Informationen:
http://www.tuwien.ac.at

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion
23.06.2017 | Max-Planck-Institut für Astrophysik

nachricht Individualisierte Faserkomponenten für den Weltmarkt
22.06.2017 | Laser Zentrum Hannover e.V. (LZH)

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften