Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Leuchtender Zufall

26.09.2016

Es galt als kaum erreichbares Ziel in der Laserforschung: Gebündeltes Licht im Terahertz-Bereich, das aus vielen verschiedenen Wellenlängen besteht. An der TU Wien gelang nun eine erste Umsetzung mit einem überraschenden Trick.

Terahertzwellen sind zwar schwer herzustellen, aber sie sind äußerst nützlich. Man kann sie zum Beispiel für chemische Sensoren verwenden, die ganz bestimmte Stoffe detektieren. Dafür müssen sie allerdings zwei wichtige Anforderungen erfüllen: Erstens muss der Terahertz-Lichtstrahl eng gebündelt sein, damit man ihn gezielt an den gewünschten Ort lenken kann, und zweitens darf er nicht wie gewöhnliches Laserlicht bloß eine einzelne Wellenlänge aufweisen, sondern sollte aus vielen verschiedenen Wellenlängen zusammengesetzt sein. Beides gleichzeitig zu erreichen war bisher kaum möglich. An der TU Wien gelang es nun mit einem ungewöhnlichen Trick erstmals einen gebündelten Terahertz-Laser mit Breitband-Spektrum herzustellen: Durch zufällig angeordnete Löcher im aktiven Lasermedium.


Zufallslaser mit Mikro-Löchern

TU Wien


Karl Unterrainer, Sebastian Schönhuber, Michael Krall und Stefan Rotter (v.l.n.r.)

TU Wien

Den Zufall mit einbauen

„Wir beschäftigen uns mit zwei unterschiedlichen Arten von Lasern, die auf den ersten Blick wenig miteinander zu tun haben“, sagt Sebastian Schönhuber vom Institut für Photonik (Fakultät für Elektrotechnik) der TU Wien. „Einerseits forschen wir an Quantenkaskadenlasern, die aus genau aufeinander abgestimmten dünnen Halbleiterschichten bestehen, andererseits haben wir uns in unserem aktuellen Projekt auch mit Zufallslasern beschäftigt.“

Quantenkaskadenlaser werden an der TU Wien bereits seit Jahren entwickelt. Sie bestehen aus einem ausgeklügelten Halbleiter-Schichtsystem. Schon bei der Konstruktion des Lasers kann man dadurch genau festlegen, welche Wellenlängen das abgestrahlte Licht haben soll. Allerdings senden Quantenkaskadenlaser ihr Licht nicht in eine bestimmte Richtung, sondern sie strahlen für gewöhnlich einen breiten Lichtkegel ab. Dieses Licht danach wieder auf einen engen Strahl zu fokussieren ist kaum möglich.

Ein ähnliches Problem hat man bei den sogenannten Zufallslasern - einem völlig anderen und recht neuen Konzept der Lasertechnik. „Zufallslaser bestehen typischerweise aus Pulvern oder Flüssigkeiten, die das Licht erzeugen und es dann gleichzeitig in ihrem Inneren immer wieder zufällig streuen“, erklärt Stefan Rotter vom Institut für Theoretische Physik. So bewegen sich die Lichtwellen auf ungeordnete, schwer vorhersehbare Weise durch den Laser. Das kann dazu führen, dass viele unterschiedliche Wellenlängen gleichzeitig abgestrahlt werden – allerdings in alle Richtungen gleichzeitig, ähnlich wie bei einer Glühbirne.

Zufällige Löcher, wie im Schweizer Käse

In einem Forschungsprojekt, in dem die beiden TU-Forschungsgruppen aus der Elektrotechnik und aus der Physik zusammenarbeiteten, wurde nun beides miteinander verknüpft: An zufällig ausgewählten Positionen wurden Löcher in einen Quantenkaskadenlaser gebohrt, somit wurde er zum Zufallslaser. Der zunächst überraschende Nebeneffekt dieses neuen Konzepts: Der durchlöcherte Laser sendet seine Strahlung direkt nach oben, in Form eines sehr eng gebündelten Strahls.

„Diesen Effekt im Detail zu erklären, war zunächst gar nicht einfach“, sagt Martin Brandstetter vom Institut für Photonik. „Es liegt an der Art, wie sich die einzelnen Wellenlängen zu einem Strahl addieren. Einzelne Frequenzanteile können in verschiedene Richtungen ausgesandt werden, aber insgesamt ist der Strahl eng fokussiert. Er zeigt genau in die Richtung, in der man die Löcher in den Quantenkaskadenlaser gebohrt hat.“

Damit steht nun erstmals ein Laser zur Verfügung, der einerseits breitbandige Teraherzstrahlung aus vielen unterschiedlichen Wellenlängen absendet und andererseits seine Strahlung in eine genau definierte Richtung abgibt – ein wichtiger Schritt für die Anwendung von Zufallslasern in der Praxis. Nun möchte man an der TU Wien noch einen Schritt weitergehen: „Wir wollen eine noch größere spektrale Bandbreite erreichen. Dadurch sollen neue Anwendungen in der Spektroskopie und bei bildgebenden Verfahren in diesem hochinteressanten aber technisch herausfordernden Bereich der Terahertzstrahlung möglich werden“, ist Sebastian Schönhuber zuversichtlich.

Rückfragehinweis:
Dipl.-Ing. Sebastian Schönhuber
Institut für Photonik
Technische Universität Wien
Gußhausstraße 27-29, 1040 Wien
T: +43-1-58801-38721
sebastian.schoenhuber@tuwien.ac.at

Dr. Florian Aigner | Technische Universität Wien
Weitere Informationen:
http://www.tuwien.ac.at

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Ein neues Experiment zum Verständnis der Dunklen Materie
14.06.2018 | Max-Planck-Institut für Radioastronomie

nachricht Quanten-Übertragung auf Knopfdruck
14.06.2018 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 in Shanghai

Die AchemAsia geht in ihr viertes Jahrzehnt und bricht auf zu neuen Ufern: Das International Expo and Innovation Forum for Sustainable Chemical Production findet vom 21. bis 23. Mai 2019 in Shanghai, China statt. Gleichzeitig erhält die Veranstaltung ein aktuelles Profil: Die elfte Ausgabe fokussiert auf Themen, die für Chinas Prozessindustrie besonders relevant sind, und legt den Schwerpunkt auf Nachhaltigkeit und Innovation.

1989 wurde die AchemAsia als Spin-Off der ACHEMA ins Leben gerufen, um die Bedürfnisse der sich damals noch entwickelnden Iindustrie in China zu erfüllen. Seit...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: Li-Fi erstmals für das industrielle Internet der Dinge getestet

Mit einer Abschlusspräsentation im BMW Werk München wurde das BMBF-geförderte Projekt OWICELLS erfolgreich abgeschlossen. Dabei wurde eine Li-Fi Kommunikation zu einem mobilen Roboter in einer 5x5m² Fertigungszelle demonstriert, der produktionsübliche Vorgänge durchführt (Teile schweißen, umlegen und prüfen). Die robuste, optische Drahtlosübertragung beruht auf räumlicher Diversität, d.h. Daten werden von mehreren LEDs und mehreren Photodioden gleichzeitig gesendet und empfangen. Das System kann Daten mit mehr als 100 Mbit/s und fünf Millisekunden Latenz übertragen.

Moderne Produktionstechniken in der Automobilindustrie müssen flexibler werden, um sich an individuelle Kundenwünsche anpassen zu können. Forscher untersuchen...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: ALMA entdeckt Trio von Baby-Planeten rund um neugeborenen Stern

Neuartige Technik, um die jüngsten Planeten in unserer Galaxis zu finden

Zwei unabhängige Astronomenteams haben mit ALMA überzeugende Belege dafür gefunden, dass sich drei junge Planeten im Orbit um den Säuglingsstern HD 163296...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Simulierter Eingriff am virtuellen Herzen

18.06.2018 | Veranstaltungen

Künstliche Intelligenz – Schafft der Mensch seine Arbeit ab?

15.06.2018 | Veranstaltungen

Internationale Konferenz zur Asteroidenforschung in Garching

13.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Neuer Abwehrmechanismus gegen Sauerstoffradikale entdeckt

18.06.2018 | Biowissenschaften Chemie

Umwandlung von nicht-neuronalen Zellen in Nervenzellen

18.06.2018 | Biowissenschaften Chemie

Im Fußballfieber: Rittal Cup verspricht Spannung und Spaß

18.06.2018 | Unternehmensmeldung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics