Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Der letzte Schrei aus dem Schwarzen Loch

28.10.2010
Forscher erzeugen im Labor Plasmen, wie sie um Schwarze Löcher herum entstehen

Schwarze Löcher sind gefräßig: In großen Mengen saugen sie Materie aus Gaswolken oder Sternen in ihrer Umgebung auf. Während die einfallende "Nahrung" immer schneller in den Schlund hineinspiralt, wird sie zunehmend dichter und auf Temperaturen von Millionen Grad Celsius aufgeheizt. Bevor die Materie schließlich verschwindet, sendet sie ungeheuer intensive Röntgenstrahlung ins All. Der "letzte Schrei" stammt von Eisen, das neben anderen Elementen in der Materie enthalten ist. Was dabei passiert, haben Forscher des Heidelberger Max-Planck-Instituts für Kernphysik gemeinsam mit Kollegen des Helmholtz-Zentrums Berlin an der Synchrotron-Röntgenquelle BESSY II untersucht. (Physical Review Letters, 27. Oktober 2010)


Exotisches Gebilde: In der Nähe eines Schwarzen Lochs wirbelt die Materie turbulent herum. Was genau geht dabei vor sich? Bild: NASA/Dana Berry, SkyWorks Digital

Um die Natur von Schwarzen Löchern zu verstehen, schaut man ihnen am besten beim Fressen zu. Interessant ist vor allem, wenn die Materie hinter dem Ereignishorizont verschwindet - jenem Abstand, ab dem die Massenanziehung des Schwarzen Lochs so stark wird, dass nicht einmal mehr Licht entweichen kann. Bei diesem turbulenten Prozess entsteht Röntgenstrahlung. Diese wiederum regt verschiedene chemische Elemente in der Materiewolke an, ihrerseits Röntgenlicht mit charakteristischen Linien (Farben) auszustrahlen. Die Analyse der Linien gibt Aufschluss über Dichte, Geschwindigkeit und Zusammensetzung der Plasmen nahe am Ereignishorizont.

Hierbei spielt Eisen eine wichtige Rolle. Obwohl es im Universum nicht so häufig vorkommt wie leichtere Elemente - vor allem Wasserstoff und Helium -, kann es wesentlich besser Röntgenlicht verschlucken und wieder aussenden. Die dabei emittierten Photonen haben außerdem eine höhere Energie beziehungsweise eine kürzere Wellenlänge (eine andere Farbe) als die der leichten Atome.

Daher hinterlassen sie im Regenbogen des zerlegten Lichts deutliche Fingerabdrücke, das heißt: Im Spektrum verraten sie sich als starke Linien. Die sogenannte K-Alpha-Linie des Eisens ist die letzte erkennbare spektrale Signatur der Materie, ihr "letzter Schrei", bevor sie auf Nimmerwiedersehen hinter dem Ereignishorizont eines Schwarzen Lochs verschwindet.

Das emittierte Röntgenlicht wird außerdem beim Durchgang durch das in größeren Abständen das Schwarze Loch umgebende Medium absorbiert. Und hier hinterlässt das Eisen wiederum klare Fingerabdrücke in den Spektren. Die Strahlung ionisiert die Atome mehrfach und entreißt durch sogenannte Photoionisation den Eisenatomen typischerweise mehr als die Hälfte der 26 Elektronen, die sie normalerweise enthalten: Es entstehen Ionen mit positiven Ladungszuständen entsprechend der Zahl der entrissenen Elektronen. Das Ergebnis sind also hochgeladene Ionen, die nicht durch Stöße, sondern durch Strahlung erzeugt wurden.

Genau diesen Prozess, das Entreißen weiterer Elektronen von hochgeladenen Ionen durch einfallendes Röntgenlicht, haben Forscher des Max-Planck-Instituts für Kernphysik in Zusammenarbeit mit Kollegen der Berliner Synchrotron-Röntgenquelle BESSY II im Labor reproduziert. Herzstück des Experiments war die am Max-Planck-Institut gebaute Elektronenstrahl-Ionenfalle EBIT (electron beam ion trap). Darin wurden Eisenatome mit einem intensiven Elektronenstrahl so weit aufgeheizt, wie es im Innern der Sonne oder eben in der Umgebung eines Schwarzen Lochs der Fall ist.

Unter derartigen Bedingungen kommt Eisen etwa als Fe14+-Ion, also vierzehnfach ionisiert, vor. Der Versuch läuft folgendermaßen ab: Eine wenige Zentimeter lange, haardünne Wolke aus solchen Ionen wird mit magnetischen und elektrischen Feldern in einem ultrahohen Vakuum schwebend gehalten. Röntgenstrahlen aus dem Synchrotron treffen dann auf diese Wolke; die Photonenenergie der Röntgenstrahlung wird von einem "Monochromator" extrem präzise selektiert und als dünner, fokussierter Strahl auf die Ionen gerichtet.

Die in diesem Versuch gemessenen Spektrallinien ließen sich direkt und problemlos mit denen jüngster Beobachtungen von Röntgenobservatorien wie Chandra und XMM-Newton vergleichen. Dabei stellte sich heraus, dass die meisten der verwendeten theoretischen Rechenverfahren die Linienpositionen nicht genau genug wiedergeben. Das ist für die Astrophysiker ein großes Problem, denn ohne genaue Kenntnis der Wellenlängen gibt es keine exakte Bestimmung des sogenannten Dopplereffekts dieser

Linien.

Der Dopplereffekt beschreibt die Änderung der Frequenz (der Energie oder der Wellenlänge) des emittierten Lichts in Abhängigkeit von der Geschwindigkeit der Quelle (der Ionen im Plasma). Dieses Phänomen erlebt jeder, der auf das Martinshorn eines vorbeifahrenden Rettungswagens achtet: Solange sich das Fahrzeug nähert, ist der wahrgenommene Ton höher, wenn sich das Auto entfernt, tiefer. Die Vermessung der Tonlage erlaubt es, bei präziser Kenntnis der Frequenz im ruhenden System (stehender Rettungswagen) die Geschwindigkeit des Senders - in der Astronomie also des Plasmas - zu bestimmen.

In diesem Zusammenhang rätselten die Wissenschaftler über die Interpretation einer der am längsten untersuchten aktiven galaktische Kerne, NGC 3783. Der Fehlerbalken in der mittels verschiedener theoretischer Modelle berechneten Ruhefrequenz führte zu so großen Unsicherheiten in der erschlossenen Geschwindigkeit des emittierenden Plasmas, dass verlässliche Aussagen über die Plasmaströme nicht mehr möglich waren.

Die Labormessungen der Heidelberger Max-Planck-Forscher haben nun unter mehreren Modellrechnungen ein theoretisches Verfahren identifiziert, das die genauesten Vorhersagen macht. Dabei wurde die bisher höchste spektrale Auflösung in diesem Wellenlängenbereich erzielt. Eine derart genaue experimentelle Überprüfung der verschiedenen Theorien war in diesem Energiebereich bisher nicht möglich gewesen.

Die neuartige Kombination aus einer Falle für hochgeladene Ionen und lichtstarken Synchrotronquellen stellt somit einen wichtigen Schritt und einen neuen Zugang für das Verständnis der Physik in den Plasmen um Schwarze Löcher oder aktive galaktische Kerne dar. Neue Impulse in diesem Bereich erwarten die Forscher durch die Kombination der EBIT-Spektroskopie mit zunehmend brillanteren Röntgenstrahlungsquellen der dritten (PETRA III am DESY) und vierten Generation (Freie-Elektronen-Laser XFEL, Hamburg; LCLS, Stanford, USA; SCSS, Tsukuba, Japan).

Originalveröffentlichung:

M. C. Simon, J. R. Crespo López-Urrutia et al.
Resonant and Near-Threshold Photoionization Cross Sections of Fe14+
Physical Review Letters, Vol. 105, Issue 18, 27. October 2010
Weitere Informationen erhalten Sie von:
Dr. Bernold Feuerstein (Presse- und Öffentlichkeitsarbeit)
Max-Planck-Institut für Kernphysik, Heidelberg
Tel.: +49 6221 516-281
E-Mail: info@mpi-hd.mpg.de
Dr. José R. Crespo López-Urrutia
Max-Planck-Institut für Kernphysik, Heidelberg
Fax: +49 6221 516-521
E-Mail: crespojr@mpi-hd.mpg.de
Dr. Zoltan Harman
Max-Planck-Institut für Kernphysik, Heidelberg
Tel.: +49 6221 516-170
E-Mail: harman@mpi-hd.mpg.de

Barbara Abrell | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de
http://www.mpg.de/bilderBerichteDokumente/dokumentation/pressemitteilungen/2010/pressemitteilung20101028/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Sterngeburt in den Winden supermassereicher Schwarzer Löcher
28.03.2017 | ESO Science Outreach Network - Haus der Astronomie

nachricht Das anwachsende Ende der Ordnung
27.03.2017 | Universität Konstanz

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Von Agenten, Algorithmen und unbeliebten Wochentagen

28.03.2017 | Unternehmensmeldung

Hannover Messe: Elektrische Maschinen in neuen Dimensionen

28.03.2017 | HANNOVER MESSE

Dimethylfumarat – eine neue Behandlungsoption für Lymphome

28.03.2017 | Medizin Gesundheit