Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Der letzte Schrei aus dem Schwarzen Loch

28.10.2010
Forscher erzeugen im Labor Plasmen, wie sie um Schwarze Löcher herum entstehen

Schwarze Löcher sind gefräßig: In großen Mengen saugen sie Materie aus Gaswolken oder Sternen in ihrer Umgebung auf. Während die einfallende "Nahrung" immer schneller in den Schlund hineinspiralt, wird sie zunehmend dichter und auf Temperaturen von Millionen Grad Celsius aufgeheizt. Bevor die Materie schließlich verschwindet, sendet sie ungeheuer intensive Röntgenstrahlung ins All. Der "letzte Schrei" stammt von Eisen, das neben anderen Elementen in der Materie enthalten ist. Was dabei passiert, haben Forscher des Heidelberger Max-Planck-Instituts für Kernphysik gemeinsam mit Kollegen des Helmholtz-Zentrums Berlin an der Synchrotron-Röntgenquelle BESSY II untersucht. (Physical Review Letters, 27. Oktober 2010)


Exotisches Gebilde: In der Nähe eines Schwarzen Lochs wirbelt die Materie turbulent herum. Was genau geht dabei vor sich? Bild: NASA/Dana Berry, SkyWorks Digital

Um die Natur von Schwarzen Löchern zu verstehen, schaut man ihnen am besten beim Fressen zu. Interessant ist vor allem, wenn die Materie hinter dem Ereignishorizont verschwindet - jenem Abstand, ab dem die Massenanziehung des Schwarzen Lochs so stark wird, dass nicht einmal mehr Licht entweichen kann. Bei diesem turbulenten Prozess entsteht Röntgenstrahlung. Diese wiederum regt verschiedene chemische Elemente in der Materiewolke an, ihrerseits Röntgenlicht mit charakteristischen Linien (Farben) auszustrahlen. Die Analyse der Linien gibt Aufschluss über Dichte, Geschwindigkeit und Zusammensetzung der Plasmen nahe am Ereignishorizont.

Hierbei spielt Eisen eine wichtige Rolle. Obwohl es im Universum nicht so häufig vorkommt wie leichtere Elemente - vor allem Wasserstoff und Helium -, kann es wesentlich besser Röntgenlicht verschlucken und wieder aussenden. Die dabei emittierten Photonen haben außerdem eine höhere Energie beziehungsweise eine kürzere Wellenlänge (eine andere Farbe) als die der leichten Atome.

Daher hinterlassen sie im Regenbogen des zerlegten Lichts deutliche Fingerabdrücke, das heißt: Im Spektrum verraten sie sich als starke Linien. Die sogenannte K-Alpha-Linie des Eisens ist die letzte erkennbare spektrale Signatur der Materie, ihr "letzter Schrei", bevor sie auf Nimmerwiedersehen hinter dem Ereignishorizont eines Schwarzen Lochs verschwindet.

Das emittierte Röntgenlicht wird außerdem beim Durchgang durch das in größeren Abständen das Schwarze Loch umgebende Medium absorbiert. Und hier hinterlässt das Eisen wiederum klare Fingerabdrücke in den Spektren. Die Strahlung ionisiert die Atome mehrfach und entreißt durch sogenannte Photoionisation den Eisenatomen typischerweise mehr als die Hälfte der 26 Elektronen, die sie normalerweise enthalten: Es entstehen Ionen mit positiven Ladungszuständen entsprechend der Zahl der entrissenen Elektronen. Das Ergebnis sind also hochgeladene Ionen, die nicht durch Stöße, sondern durch Strahlung erzeugt wurden.

Genau diesen Prozess, das Entreißen weiterer Elektronen von hochgeladenen Ionen durch einfallendes Röntgenlicht, haben Forscher des Max-Planck-Instituts für Kernphysik in Zusammenarbeit mit Kollegen der Berliner Synchrotron-Röntgenquelle BESSY II im Labor reproduziert. Herzstück des Experiments war die am Max-Planck-Institut gebaute Elektronenstrahl-Ionenfalle EBIT (electron beam ion trap). Darin wurden Eisenatome mit einem intensiven Elektronenstrahl so weit aufgeheizt, wie es im Innern der Sonne oder eben in der Umgebung eines Schwarzen Lochs der Fall ist.

Unter derartigen Bedingungen kommt Eisen etwa als Fe14+-Ion, also vierzehnfach ionisiert, vor. Der Versuch läuft folgendermaßen ab: Eine wenige Zentimeter lange, haardünne Wolke aus solchen Ionen wird mit magnetischen und elektrischen Feldern in einem ultrahohen Vakuum schwebend gehalten. Röntgenstrahlen aus dem Synchrotron treffen dann auf diese Wolke; die Photonenenergie der Röntgenstrahlung wird von einem "Monochromator" extrem präzise selektiert und als dünner, fokussierter Strahl auf die Ionen gerichtet.

Die in diesem Versuch gemessenen Spektrallinien ließen sich direkt und problemlos mit denen jüngster Beobachtungen von Röntgenobservatorien wie Chandra und XMM-Newton vergleichen. Dabei stellte sich heraus, dass die meisten der verwendeten theoretischen Rechenverfahren die Linienpositionen nicht genau genug wiedergeben. Das ist für die Astrophysiker ein großes Problem, denn ohne genaue Kenntnis der Wellenlängen gibt es keine exakte Bestimmung des sogenannten Dopplereffekts dieser

Linien.

Der Dopplereffekt beschreibt die Änderung der Frequenz (der Energie oder der Wellenlänge) des emittierten Lichts in Abhängigkeit von der Geschwindigkeit der Quelle (der Ionen im Plasma). Dieses Phänomen erlebt jeder, der auf das Martinshorn eines vorbeifahrenden Rettungswagens achtet: Solange sich das Fahrzeug nähert, ist der wahrgenommene Ton höher, wenn sich das Auto entfernt, tiefer. Die Vermessung der Tonlage erlaubt es, bei präziser Kenntnis der Frequenz im ruhenden System (stehender Rettungswagen) die Geschwindigkeit des Senders - in der Astronomie also des Plasmas - zu bestimmen.

In diesem Zusammenhang rätselten die Wissenschaftler über die Interpretation einer der am längsten untersuchten aktiven galaktische Kerne, NGC 3783. Der Fehlerbalken in der mittels verschiedener theoretischer Modelle berechneten Ruhefrequenz führte zu so großen Unsicherheiten in der erschlossenen Geschwindigkeit des emittierenden Plasmas, dass verlässliche Aussagen über die Plasmaströme nicht mehr möglich waren.

Die Labormessungen der Heidelberger Max-Planck-Forscher haben nun unter mehreren Modellrechnungen ein theoretisches Verfahren identifiziert, das die genauesten Vorhersagen macht. Dabei wurde die bisher höchste spektrale Auflösung in diesem Wellenlängenbereich erzielt. Eine derart genaue experimentelle Überprüfung der verschiedenen Theorien war in diesem Energiebereich bisher nicht möglich gewesen.

Die neuartige Kombination aus einer Falle für hochgeladene Ionen und lichtstarken Synchrotronquellen stellt somit einen wichtigen Schritt und einen neuen Zugang für das Verständnis der Physik in den Plasmen um Schwarze Löcher oder aktive galaktische Kerne dar. Neue Impulse in diesem Bereich erwarten die Forscher durch die Kombination der EBIT-Spektroskopie mit zunehmend brillanteren Röntgenstrahlungsquellen der dritten (PETRA III am DESY) und vierten Generation (Freie-Elektronen-Laser XFEL, Hamburg; LCLS, Stanford, USA; SCSS, Tsukuba, Japan).

Originalveröffentlichung:

M. C. Simon, J. R. Crespo López-Urrutia et al.
Resonant and Near-Threshold Photoionization Cross Sections of Fe14+
Physical Review Letters, Vol. 105, Issue 18, 27. October 2010
Weitere Informationen erhalten Sie von:
Dr. Bernold Feuerstein (Presse- und Öffentlichkeitsarbeit)
Max-Planck-Institut für Kernphysik, Heidelberg
Tel.: +49 6221 516-281
E-Mail: info@mpi-hd.mpg.de
Dr. José R. Crespo López-Urrutia
Max-Planck-Institut für Kernphysik, Heidelberg
Fax: +49 6221 516-521
E-Mail: crespojr@mpi-hd.mpg.de
Dr. Zoltan Harman
Max-Planck-Institut für Kernphysik, Heidelberg
Tel.: +49 6221 516-170
E-Mail: harman@mpi-hd.mpg.de

Barbara Abrell | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de
http://www.mpg.de/bilderBerichteDokumente/dokumentation/pressemitteilungen/2010/pressemitteilung20101028/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht MAIUS-1 – erste Experimente mit ultrakalten Atomen im All
24.01.2017 | Leibniz Universität Hannover

nachricht European XFEL: Forscher können erste Vorschläge für Experimente einreichen
24.01.2017 | European XFEL GmbH

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Forscher spinnen künstliche Seide aus Kuhmolke

Ein schwedisch-deutsches Forscherteam hat bei DESY einen zentralen Prozess für die künstliche Produktion von Seide entschlüsselt. Mit Hilfe von intensivem Röntgenlicht konnten die Wissenschaftler beobachten, wie sich kleine Proteinstückchen – sogenannte Fibrillen – zu einem Faden verhaken. Dabei zeigte sich, dass die längsten Proteinfibrillen überraschenderweise als Ausgangsmaterial schlechter geeignet sind als Proteinfibrillen minderer Qualität. Das Team um Dr. Christofer Lendel und Dr. Fredrik Lundell von der Königlich-Technischen Hochschule (KTH) Stockholm stellt seine Ergebnisse in den „Proceedings“ der US-Akademie der Wissenschaften vor.

Seide ist ein begehrtes Material mit vielen erstaunlichen Eigenschaften: Sie ist ultraleicht, belastbarer als manches Metall und kann extrem elastisch sein....

Im Focus: Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

An Bord einer Höhenforschungsrakete wurde erstmals im Weltraum eine Wolke ultrakalter Atome erzeugt. Damit gelang der MAIUS-Mission der Nachweis, dass quantenoptische Sensoren auch in rauen Umgebungen wie dem Weltraum eingesetzt werden können – eine Voraussetzung, um fundamentale Fragen der Wissenschaft beantworten zu können und ein Innovationstreiber für alltägliche Anwendungen.

Gemäß dem Einstein’schen Äquivalenzprinzip werden alle Körper, unabhängig von ihren sonstigen Eigenschaften, gleich stark durch die Gravitationskraft...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens

Am 24. Januar 1917 stach Heinrich Klebahn mit einer Nadel in den verfärbten Belag eines gesalzenen Seefischs, übertrug ihn auf festen Nährboden – und entdeckte einige Wochen später rote Kolonien eines "Salzbakteriums". Heute heißt es Halobacterium salinarum und ist genau 100 Jahre später Mikrobe des Jahres 2017, gekürt von der Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM). Halobacterium salinarum zählt zu den Archaeen, dem Reich von Mikroben, die zwar Bakterien ähneln, aber tatsächlich enger verwandt mit Pflanzen und Tieren sind.

Rot und salzig
Archaeen sind häufig an außergewöhnliche Lebensräume angepasst, beispielsweise heiße Quellen, extrem saure Gewässer oder – wie H. salinarum – an...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Neuer Algorithmus in der Künstlichen Intelligenz

24.01.2017 | Veranstaltungen

Gehirn und Immunsystem beim Schlaganfall – Neueste Erkenntnisse zur Interaktion zweier Supersysteme

24.01.2017 | Veranstaltungen

Hybride Eisschutzsysteme – Lösungen für eine sichere und nachhaltige Luftfahrt

23.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Im Interview mit Harald Holzer, Geschäftsführer der vitaliberty GmbH

24.01.2017 | Unternehmensmeldung

MAIUS-1 – erste Experimente mit ultrakalten Atomen im All

24.01.2017 | Physik Astronomie

European XFEL: Forscher können erste Vorschläge für Experimente einreichen

24.01.2017 | Physik Astronomie