Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Leipziger Physiker lösen 80 Jahre altes Problem der Raman-Spektroskopie

29.03.2016

Physiker der Universität Leipzig haben ein 80 Jahre altes Problem der sogenannten Raman-Spektroskopie gelöst. Die Forscher um Prof. Dr. Marius Grundmann stellten eine Theorie auf und erklärten damit die bei der Raman-Streuung auftretenden Intensitäten für beliebig orientierte Kristalle aller Klassen. Ihre Erkenntnisse haben sie kürzlich im Fachjournal "Physical Review Letters" veröffentlicht.

Die Raman-Spektroskopie ist eine berührungsfreie Analysemethode zur Materialcharakterisierung. Sie wird unter anderem zur chemischen und physikalischen Charakterisierung von Halbleitermaterialien, Edel- und Halbedelsteinen, Katalysatoren, Mineralien, Polymeren und vielen anderen Materialien verwendet.

Bei der Raman-Streuung regt auf den Kristall einfallendes Laserlicht mechanische Schwingungen der Atome (Gitterschwingungen) an, verliert dabei an Energie und kommt mit etwas anderer Farbe (Wellenlänge) zurück. Das untersuchte Phänomen tritt bei nicht kubischen Kristallen auf, wie beispielsweise bei Galliumnitrid - dem Material, aus dem moderne, weiße Leuchtdioden hergestellt werden.
"Die mit der Doppelbrechung verbundenen Effekte auf die Raman-Streuung wurden, nach Scheitern erster Ansätze, jahrzehntelang ignoriert, als viel zu schwierig angesehen oder auch völlig falsch interpretiert", sagt Experimentalphysiker Grundmann. Bei der Doppelbrechung breitet sich Licht verschiedener Polarisation im Kristall mit unterschiedlicher Geschwindigkeit aus.

Mit der neuen Leipziger Theorie, welche die durch Doppelbrechung verursachten Effekte berücksichtigt, gelingt es, die im Labor gemessenen Eigenschaften von Galliumnitrid und anderen doppelbrechenden Materialien wie Zinkoxid oder Galliumoxid erstmalig vollständig zu erklären.

"Es wird möglich, die Raman-Streuung an optisch anisotropen Materialien überhaupt zu verstehen. Anwendungen ergeben sich für alle kristallinen Materialien und insbesondere Dünnschichtsysteme, die nicht aus kubischen Materialien aufgebaut sind, also zum Beispiel blaue und weiße Leuchtdioden, UV-Fotodetektoren, UV-Laser, aber auch bestimmte Transistoren, die nicht aus Silizium sind", sagt Grundmann.

Bisherige Erklärungsansätze seien dadurch hinfällig geworden, ergänzt Physiker Dr. Christian Kranert aus Grundmanns Forscherteam. "Unsere Theorie lässt es zu, die Orientierung eines Kristalles zu bestimmen. Sie eröffnet uns einen völlig neuen Zugang für die Untersuchung der Verbindung von elektronischen und strukturellen Eigenschaften", erklärt er.

Die Kristallorientierung ist eine Grundeigenschaft, die für physikalische Experimente von großer Bedeutung ist. "Es ist nun erstmals möglich, diese optisch durch Raman-Spektroskopie zu bestimmen", erläutert Grundmann.

In folgenden Arbeiten werden die Leipziger Physiker ihren neuen Erkenntnisse auf weitere Materialien ausdehnen, die für Leuchtdioden, Fotodetektoren, Solarzellen und Transistoren von Bedeutung sind.

Originaltitel der Veröffentlichung in "Physical Review Letters": "Raman Tensor Formalism for Optically Anisotropic Crystals", DOI: 10.1103/PhysRevLett.116.127401


Weitere Informationen:

Prof. Dr. Marius Grundmann
Telefon: +49 341 97-32650
E-Mail: grundmann@physik.uni-leipzig.de

Weitere Informationen:

http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.116.127401

Susann Huster | Universität Leipzig
Weitere Informationen:
http://www.uni-leipzig.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Vorstoß ins Innere der Atome
23.02.2018 | Max-Planck-Institut für Quantenoptik

nachricht Quanten-Wiederkehr: Alles wird wieder wie früher
23.02.2018 | Technische Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics