Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Lebensmittelkontrolle mit Millimeterwellen

01.12.2011
Wir können durch Glas, Wasser und Luft hindurchsehen, nicht aber durch Packpapier, Plastik oder Pappe. Was dem menschlichen Auge verborgen bleibt, macht ein neuer Millimeterwellensensor sichtbar: Er durchleuchtet optisch nicht transparente Stoffe und arbeitet anders als Röntgenscanner nicht mit gesundheitsschädlichen Strahlen.

Ist die Packung richtig befüllt? Befinden sich in der Schokolade Verunreinigungen? Sind die Plastiknähte korrekt verschweißt? Verbirgt sich in dem Päckchen ein Messer? Antworten auf all diese Fragen liefert der Materialscanner SAMMI, kurz für Stand Alone MilliMeter wave Imager. Der Millimeterwellensensor durchleuchtet alle optisch nicht transparenten Materialien. Forscher des Fraunhofer-Instituts für Hochfrequenzphysik und Radartechnik FHR in Wachtberg haben das Gerät entwickelt, das mit einer Breite von 50 und einer Höhe von 32 Zentimeter nicht größer ist als ein kompakter Laserdrucker. Alle nicht-metallischen Stoffe stellen für SAMMI kein Hindernis dar.


Der Millimeterwellensensor durchleuchtet alle optisch nicht transparenten, nicht metallischen Materialien. © Fraunhofer FHR

»Das System erkennt Holzsplitter im Zellstoff von Windeln, Luftblasen im Kunststoff, Brüche im Marzipanriegel, Fremdkörper in Lebensmitteln. Es kann sogar den Austrocknungsprozess in Pflanzen beobachten und feststellen, wie stark diese durch Trockenperioden gestresst wurden«, sagt Dr. Helmut Essen, Leiter der Abteilung Millimeterwellenradar und Höchtstfrequenzsensorik vom FHR. Daher ist der Scanner vielseitig einsetzbar – er eignet sich sowohl für die industrielle Produktkon-trolle und Qualitätssicherung als auch für die Materialanalyse im Labor. Da das System gefährliche Substanzen wie Sprengstoffpulver in Briefen detektieren kann, lassen sich auch gefährdete Personen wie etwa Politiker oder Mitarbeiter in Frachtunternehmen mit dem Millimeterwellenradar schützen.

Der Clou: SAMMI macht kleinste Materialunterschiede sichtbar, die im Röntgenbereich verborgen bleiben. Denn anders als Röntgenscanner unterscheidet SAMMI beispielsweise zwischen den unterschiedlichen Füllungen von Pralinen oder Gummimischungen, die eine ähnliche oder identische Absorption aufweisen. Ein weiterer Vorteil: Der Materialscanner arbeitet nicht mit ionisierender Strahlung, die zu Gesundheitsschäden führen kann. Er ist zudem wartungsarm, regelmäßige Prüfungen wie bei Röntgenröhren entfallen.

Doch wie funktioniert SAMMI? Im Gehäuse des Systems sind auf zwei sich gegenüberliegenden rotierenden Scheiben je eine Sende- und eine Empfangsantenne angebracht. Ein Förderband fährt die Probe – etwa ein Paket mit unbekanntem Inhalt – zwischen den Antennen hindurch, wobei diese elektromagnetische Wellen im Hochfrequenzbereich von 78 GHz senden. Die verschiedenen Zonen der Probe dämpfen das Signal mit unterschiedlicher Intensität. Auf diese Weise zeigen die diversen Materialzusammensetzungen einer Probe einen unterscheidbaren Kontrast an. »Im Prinzip untersuchen wir die zu durchleuchtenden Gegenstände auf Unähnlichkeiten«, erläutert Essen. Der Probeninhalt wird in Echtzeit auf einem ausklappbaren Display dargestellt, das Bestandteil des Scanners ist. Enthält ein Paket beispielsweise ein Messer, so ist sogar die Maserung des Griffs erkennbar. Sollte dieser hohl sein, zeigt der Millimeterwellensensor dies ebenfalls an. Das Gerät scannt eine Fläche von 30 mal 30 Zentimeter in rund 60 Sekunden.

»Unser System lässt sich ohne Sicherheitsvorkehrungen und -einweisungen bedienen und durch sein geringes Gewicht von rund 20 Kilogramm mobil einsetzen. Zudem ist es für unterschiedliche Messfrequenzen auslegbar«, betont der Wissenschaftler. Künftig wollen die Forscher das System für Terahertzfrequenzen von 2 THz »aufrüsten«. »Dann werden wir in der Lage sein, nicht nur unterschiedliche Strukturen zu erkennen, sondern auch feststellen können, aus welchem Kunststoff ein Produkt ist. Das ist im Augenblick noch nicht möglich«, so Dr. Essen.

Derzeit eignet sich SAMMI nur für Stichprobenkontrollen. Doch die FHR-Forscher sind dabei, den Millimeterwellensensor für eine Produktionsstraße in einer Industrieanlage zur schnellen, automatisierten Kontrolle von Waren anzupassen: Hierfür bringen sie eine Zeile von Sensoren über dem Förderband an. Mit einer Geschwindigkeit von bis zu sechs Meter pro Sekunde sollen die Produkte künftig durchleuchtet werden.

Dr. Helmut Essen | Fraunhofer Mediendienst
Weitere Informationen:
http://www.fraunhofer.de/de/presse/presseinformationen/2011/dezember/lebensmittelkontrolle-mit-millimeterwellen.html

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Waschen für die Mikrowelt – Potsdamer Physiker entwickeln lichtempfindliche Seife
02.12.2016 | Universität Potsdam

nachricht Quantenreibung: Jenseits der Näherung des lokalen Gleichgewichts
01.12.2016 | Forschungsverbund Berlin e.V.

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie