Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Lebensmittelkontrolle mit Millimeterwellen

01.12.2011
Wir können durch Glas, Wasser und Luft hindurchsehen, nicht aber durch Packpapier, Plastik oder Pappe. Was dem menschlichen Auge verborgen bleibt, macht ein neuer Millimeterwellensensor sichtbar: Er durchleuchtet optisch nicht transparente Stoffe und arbeitet anders als Röntgenscanner nicht mit gesundheitsschädlichen Strahlen.

Ist die Packung richtig befüllt? Befinden sich in der Schokolade Verunreinigungen? Sind die Plastiknähte korrekt verschweißt? Verbirgt sich in dem Päckchen ein Messer? Antworten auf all diese Fragen liefert der Materialscanner SAMMI, kurz für Stand Alone MilliMeter wave Imager. Der Millimeterwellensensor durchleuchtet alle optisch nicht transparenten Materialien. Forscher des Fraunhofer-Instituts für Hochfrequenzphysik und Radartechnik FHR in Wachtberg haben das Gerät entwickelt, das mit einer Breite von 50 und einer Höhe von 32 Zentimeter nicht größer ist als ein kompakter Laserdrucker. Alle nicht-metallischen Stoffe stellen für SAMMI kein Hindernis dar.


Der Millimeterwellensensor durchleuchtet alle optisch nicht transparenten, nicht metallischen Materialien. © Fraunhofer FHR

»Das System erkennt Holzsplitter im Zellstoff von Windeln, Luftblasen im Kunststoff, Brüche im Marzipanriegel, Fremdkörper in Lebensmitteln. Es kann sogar den Austrocknungsprozess in Pflanzen beobachten und feststellen, wie stark diese durch Trockenperioden gestresst wurden«, sagt Dr. Helmut Essen, Leiter der Abteilung Millimeterwellenradar und Höchtstfrequenzsensorik vom FHR. Daher ist der Scanner vielseitig einsetzbar – er eignet sich sowohl für die industrielle Produktkon-trolle und Qualitätssicherung als auch für die Materialanalyse im Labor. Da das System gefährliche Substanzen wie Sprengstoffpulver in Briefen detektieren kann, lassen sich auch gefährdete Personen wie etwa Politiker oder Mitarbeiter in Frachtunternehmen mit dem Millimeterwellenradar schützen.

Der Clou: SAMMI macht kleinste Materialunterschiede sichtbar, die im Röntgenbereich verborgen bleiben. Denn anders als Röntgenscanner unterscheidet SAMMI beispielsweise zwischen den unterschiedlichen Füllungen von Pralinen oder Gummimischungen, die eine ähnliche oder identische Absorption aufweisen. Ein weiterer Vorteil: Der Materialscanner arbeitet nicht mit ionisierender Strahlung, die zu Gesundheitsschäden führen kann. Er ist zudem wartungsarm, regelmäßige Prüfungen wie bei Röntgenröhren entfallen.

Doch wie funktioniert SAMMI? Im Gehäuse des Systems sind auf zwei sich gegenüberliegenden rotierenden Scheiben je eine Sende- und eine Empfangsantenne angebracht. Ein Förderband fährt die Probe – etwa ein Paket mit unbekanntem Inhalt – zwischen den Antennen hindurch, wobei diese elektromagnetische Wellen im Hochfrequenzbereich von 78 GHz senden. Die verschiedenen Zonen der Probe dämpfen das Signal mit unterschiedlicher Intensität. Auf diese Weise zeigen die diversen Materialzusammensetzungen einer Probe einen unterscheidbaren Kontrast an. »Im Prinzip untersuchen wir die zu durchleuchtenden Gegenstände auf Unähnlichkeiten«, erläutert Essen. Der Probeninhalt wird in Echtzeit auf einem ausklappbaren Display dargestellt, das Bestandteil des Scanners ist. Enthält ein Paket beispielsweise ein Messer, so ist sogar die Maserung des Griffs erkennbar. Sollte dieser hohl sein, zeigt der Millimeterwellensensor dies ebenfalls an. Das Gerät scannt eine Fläche von 30 mal 30 Zentimeter in rund 60 Sekunden.

»Unser System lässt sich ohne Sicherheitsvorkehrungen und -einweisungen bedienen und durch sein geringes Gewicht von rund 20 Kilogramm mobil einsetzen. Zudem ist es für unterschiedliche Messfrequenzen auslegbar«, betont der Wissenschaftler. Künftig wollen die Forscher das System für Terahertzfrequenzen von 2 THz »aufrüsten«. »Dann werden wir in der Lage sein, nicht nur unterschiedliche Strukturen zu erkennen, sondern auch feststellen können, aus welchem Kunststoff ein Produkt ist. Das ist im Augenblick noch nicht möglich«, so Dr. Essen.

Derzeit eignet sich SAMMI nur für Stichprobenkontrollen. Doch die FHR-Forscher sind dabei, den Millimeterwellensensor für eine Produktionsstraße in einer Industrieanlage zur schnellen, automatisierten Kontrolle von Waren anzupassen: Hierfür bringen sie eine Zeile von Sensoren über dem Förderband an. Mit einer Geschwindigkeit von bis zu sechs Meter pro Sekunde sollen die Produkte künftig durchleuchtet werden.

Dr. Helmut Essen | Fraunhofer Mediendienst
Weitere Informationen:
http://www.fraunhofer.de/de/presse/presseinformationen/2011/dezember/lebensmittelkontrolle-mit-millimeterwellen.html

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Planeten außerhalb unseres Sonnensystems: Bayreuther Forscher dringen tief ins Weltall vor
23.02.2017 | Universität Bayreuth

nachricht Kühler Zwerg und die sieben Planeten
23.02.2017 | ESO Science Outreach Network - Haus der Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: „Vernetzte Autonome Systeme“ von acatech und DFKI auf der CeBIT

Auf der IT-Messe CeBIT vom 20. bis 24. März präsentieren acatech – Deutsche Akademie der Technikwissenschaften und das Deutsche Forschungszentrum für Künstliche Intelligenz (DFKI) in Kooperation mit der Deutschen Messe AG vernetzte Autonome Systeme. In Halle 12 am Stand B 63 erwarten die Besucherinnen und Besucher unter anderem Roboter, die Hand in Hand mit Menschen zusammenarbeiten oder die selbstständig gefährliche Umgebungen erkunden.

Auf der IT-Messe CeBIT vom 20. bis 24. März präsentieren acatech – Deutsche Akademie der Technikwissenschaften und das Deutsche Forschungszentrum für...

Im Focus: Kühler Zwerg und die sieben Planeten

Erdgroße Planeten mit gemäßigtem Klima in System mit ungewöhnlich vielen Planeten entdeckt

In einer Entfernung von nur 40 Lichtjahren haben Astronomen ein System aus sieben erdgroßen Planeten entdeckt. Alle Planeten wurden unter Verwendung von boden-...

Im Focus: Mehr Sicherheit für Flugzeuge

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem totalen Triebwerksausfall zum Einsatz kommt, um den Piloten ein sicheres Gleiten zu einem Notlandeplatz zu ermöglichen, und ein Assistenzsystem für Segelflieger, das ihnen das Erreichen größerer Höhen erleichtert. Präsentiert werden sie von Prof. Dr.-Ing. Wolfram Schiffmann auf der Internationalen Fachmesse für Allgemeine Luftfahrt AERO vom 5. bis 8. April in Friedrichshafen.

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem...

Im Focus: HIGH-TOOL unterstützt Verkehrsplanung in Europa

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt sich bewerten, wie verkehrspolitische Maßnahmen langfristig auf Wirtschaft, Gesellschaft und Umwelt wirken. HIGH-TOOL ist ein frei zugängliches Modell mit Modulen für Demografie, Wirtschaft und Ressourcen, Fahrzeugbestand, Nachfrage im Personen- und Güterverkehr sowie Umwelt und Sicherheit. An dem nun erfolgreich abgeschlossenen EU-Projekt unter der Koordination des KIT waren acht Partner aus fünf Ländern beteiligt.

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt...

Im Focus: Zinn in der Photodiode: nächster Schritt zur optischen On-Chip-Datenübertragung

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium allein – die stoffliche Basis der Chip-Produktion – sind als Lichtquelle kaum geeignet. Jülicher Physiker haben nun gemeinsam mit internationalen Partnern eine Diode vorgestellt, die neben Silizium und Germanium zusätzlich Zinn enthält, um die optischen Eigenschaften zu verbessern. Das Besondere daran: Da alle Elemente der vierten Hauptgruppe angehören, sind sie mit der bestehenden Silizium-Technologie voll kompatibel.

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Aufbruch: Forschungsmethoden in einer personalisierten Medizin

24.02.2017 | Veranstaltungen

Österreich erzeugt erstmals Erdgas aus Sonnen- und Windenergie

24.02.2017 | Veranstaltungen

Big Data Centrum Ostbayern-Südböhmen startet Veranstaltungsreihe

23.02.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Fraunhofer HHI auf dem Mobile World Congress mit VR- und 5G-Technologien

24.02.2017 | Messenachrichten

MWC 2017: 5G-Hauptstadt Berlin

24.02.2017 | Messenachrichten

Auf der molekularen Streckbank

24.02.2017 | Biowissenschaften Chemie