Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Leben und Sterben von Sterngeschwistern

23.07.2014

In dieser eindrucksvollen neuen Aufnahme vom La Silla-Observatorium der ESO in Chile drängen sich junge Sterne vor einem Hintergrund aus Wolken leuchtenden Gases und Schneisen von Staub. Dieser Sternhaufen mit der Bezeichnung NGC 3293 wäre vor ungefähr 10 Millionen Jahren selbst nur eine Wolke aus Gas und Staub gewesen, aber als die Sternentstehung einsetzte, wurde daraus die helle Gruppe von Sternen, die man hier sieht. Sternhaufen wie dieser sind kosmische Laboratorien, die es Astronomen ermöglichen mehr darüber zu lernen wie sich Sterne entwickeln.

Der wunderschöne Sternhaufen NGC 3293 befindet sich 8000 Lichtjahre von der Erde entfernt im Sternbild Carina (der Schiffskiel). Dieser Sternhaufen wurde zum ersten Mal vom französischen Astronomen Nicolas-Louis de Lacaille im Jahr 1751 während seines Aufenthalts in Südafrika mit einem winzigen Teleskop beobachtet, das eine Öffnung von 12 Millimetern hatte. Es ist einer der hellsten Sternhaufen am Südsternhimmel und kann unter guten Bedingungen leicht mit dem bloßen Auge gesehen werden.


Der Sternhaufen NGC 3293

Sternhaufen wie NGC 3293 enthalten Sterne, die sich zur selben Zeit gebildet haben. Sie befinden sich im selben Abstand zur Erde und sind aus derselben Wolke aus Gas und Staub entstanden, wodurch sie dieselbe chemischen Zusammensetzung besitzen. Deshalb sind Sternhaufen wie dieser die idealen Objekte um Theorien zur Entwicklung von Sternen zu testen.

Die meisten der Sterne auf diesem Bild sind sehr jung, und der Sternhaufen selbst ist weniger als 10 Millionen Jahre alt. Sie sind auf kosmischen Skalen nur Babys, wenn man berücksichtigt, dass die Sonne 4,6 Milliarden Jahre alt ist und nur als Stern mittleren Alters betrachtet wird. Ein Überfluss heller, blauer junger Sterne ist üblich in offenen Sternhaufen wie NGC 3293 oder zum Beispiel auch in dem bekannteren Kappa Crucis-Sternhaufen, der auch als Schmuckkästchen oder NGC 4755 bezeichnet wird.

Jeder dieser offenen Sternhaufen entstand aus einer gigantischen Wolke molekularen Gases, und ihre Sterne werden durch ihre gegenseitige gravitative Anziehung zusammengehalten. Aber diese Kräfte sind nicht stark genug, um einen Sternhaufen bei einem Zusammenstoß mit anderen Sternhaufen und Gaswolken zusammenzuhalten, wobei das Gas und der Staub des Sternhaufens zerstreut wird. Deshalb bestehen offene Sternhaufen nur einige Hundert Millionen Jahre, im Gegensatz zu ihren großen Verwandten, den Kugelsternhaufen, die Milliarden von Jahren überleben können und weitaus mehr Sterne beherbergen.

Trotz einiger Hinweise, die noch auf aktive Sternentstehung in NGC 3293 hindeuten, nimmt man an, dass die meisten, wenn nicht sogar alle der fünfzig Sterne in diesem Sternhaufen gleichzeitig entstanden sind. Aber obwohl diese Sterne alle gleich alt sind, besitzt nicht jeder von ihnen die grelle Erscheinung eines Sterns in seiner Kindheit. Einige von ihnen erscheinen eindeutig älter, wodurch Astronomen die Möglichkeit erhalten, zu erforschen wie und warum Sterne sich mit unterschiedlicher Geschwindigkeit entwickeln.

Ein gutes Beispiel ist der helle orangefarbene Stern rechts unten in der Aufnahme. Dieser gewaltige Stern, ein Roter Riese, wäre als einer der größten und leuchtstärksten seines Schlags entstanden, aber helle Sterne brennen schnell aus. Als der Stern den Brennstoff in seinem Kern verbraucht hatte, veränderte sich seine interne Dynamik und er begann sich abzukühlen und blähte sich auf, wodurch er der Rote Riese wurde, den man nun beobachten kann. Rote Riesen erreichen das Ende ihrer Lebenszeit, die Schwestersterne dieses roten Riesen jedoch befinden sich immer noch in der Vor-Hauptreihe, dem Zeitraum vor der langen, stabilen, mittleren Periode im Leben eines Sterns. Man sieht diese Sterne in den besten Jahren ihres Lebens als heiße, helle und weiße Objekte vor einem roten und staubigen Hintergrund.

Diese Aufnahme wurde mit dem Wide Field Imager (WFI) erstellt, der am MPG/ESO 2,2-Meter-Teleskop am La Silla-Observatorium im Norden Chiles angebracht ist.

Weitere Informationen

Die Europäische Südsternwarte ESO (European Southern Observatory) ist die führende europäische Organisation für astronomische Forschung und das wissenschaftlich produktivste Observatorium der Welt. Getragen wird die Organisation durch ihre 15 Mitgliedsländer: Belgien, Brasilien, Dänemark, Deutschland, Finnland, Frankreich, Großbritannien, Italien, die Niederlande, Österreich, Portugal, Spanien, Schweden, die Schweiz und die Tschechische Republik. Die ESO ermöglicht astronomische Spitzenforschung, indem sie leistungsfähige bodengebundene Teleskope entwirft, konstruiert und betreibt. Auch bei der Förderung internationaler Zusammenarbeit auf dem Gebiet der Astronomie spielt die Organisation eine maßgebliche Rolle. Die ESO betreibt drei weltweit einzigartige Beobachtungsstandorte in Nordchile: La Silla, Paranal und Chajnantor. Auf dem Paranal betreibt die ESO mit dem Very Large Telescope (VLT) das weltweit leistungsfähigste Observatorium für Beobachtungen im Bereich des sichtbaren Lichts und zwei Teleskope für Himmelsdurchmusterungen: VISTA, das größte Durchmusterungsteleskop der Welt, arbeitet im Infraroten, während das VLT Survey Telescope (VST) für Himmelsdurchmusterungen ausschließlich im sichtbaren Licht konzipiert ist. Die ESO ist der europäische Partner bei den neuartigen Teleskopverbund ALMA, dem größten astronomischen Projekt überhaupt. Derzeit entwickelt die ESO ein Großteleskop mit 39 Metern Durchmesser für Beobachtungen im Bereich des sichtbaren und Infrarotlichts, das einmal das größte optische Teleskop der Welt werden wird: das European Extremely Large Telescope (E-ELT).

Die Übersetzungen von englischsprachigen ESO-Pressemitteilungen sind ein Service des ESO Science Outreach Network (ESON), eines internationalen Netzwerks für astronomische Öffentlichkeitsarbeit, in dem Wissenschaftler und Wissenschaftskommunikatoren aus allen ESO-Mitgliedsländern (und einigen weiteren Staaten) vertreten sind. Deutscher Knoten des Netzwerks ist das Haus der Astronomie in Heidelberg.

Links

Kontaktinformationen

Carolin Liefke
ESO Science Outreach Network - Haus der Astronomie
Heidelberg, Deutschland
Tel: 06221 528 226
E-Mail: eson-germany@eso.org

Richard Hook
ESO education and Public Outreach Department
Garching bei München, Germany

Tel: +49 89 3200 6655
E-Mail: rhook@eso.org

Dies ist eine Übersetzung der ESO-Pressemitteilung eso1422.

Dr. Carolin Liefke | ESO-Media-Newsletter
Weitere Informationen:
http://www.eso.org/public/germany/news/eso1422/

Weitere Berichte zu: Astronomie ESO Gas MPG NGC Network Observatory Outreach Science Sternhaufen Telescope Teleskop Wolke

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Vorstoß ins Innere der Atome
23.02.2018 | Max-Planck-Institut für Quantenoptik

nachricht Quanten-Wiederkehr: Alles wird wieder wie früher
23.02.2018 | Technische Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics