Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mit Laserstrahlen Sprengstoff finden

27.02.2012
Eine Erfindung der TU Wien weist Chemikalien auf große Distanz nach – selbst wenn sie im Inneren von Behältern verborgen sind.

Von explosiven Substanzen hält man gern etwas Abstand, doch um sie aufzuspüren und chemisch nachzuweisen ließ sich ein recht enger Kontakt bisher nicht vermeiden. An der TU Wien wurde nun eine Methode entwickelt, Chemikalien auch in geschlossenenen Gefäßen auf eine Entfernung von über hundert Metern genau zu untersuchen. Das Licht eines Laserstrahls wird von verschiedenen Substanzen auf charakteristische Weise gestreut – dadurch lässt sich sogar der Inhalt eines Containers chemisch analysieren ohne ihn zu öffnen.

„Chemischer Fingerabdruck“ im gestreuten Licht

„Die Methode, die wir verwenden, ist die Raman-Spektroskopie“, sagt Professor Bernhard Lendl vom Institut für Chemische Technologien und Analytik der TU Wien. Mit einem Laserstrahl beleuchtet man die Probe, die chemisch analysiert werden soll. Wird das Licht an den Molekülen der Probe gestreut, kann es seine Energie ändern. Beispielsweise können einzelne Photonen des Laserlichts Schwingungen in den Molekülen der Probe anregen und dadurch Energie abgeben. Damit ändert sich die Wellenlänge des Lichts und somit seine Farbe. Aus der genauen Farb-Zusammensetzung des gestreuten Lichts lässt sich daher ablesen, an welcher chemischen Substanz es gestreut wurde.

Messen aus großer Distanz – dank höchster Präzision

„Bisher musste man bei dieser Art der Raman-Spektroskopie den Laser und den Licht-Detektor in unmittelbarer räumlicher Nähe zur Probe aufstellen“, erklärt Bernhard Zachhuber. Durch seine Weiterentwicklungen sind die Messungen nun aber auch auf große Distanzen möglich. „Von hundert Millionen Photonen regen nur einige wenige überhaupt einen Raman-Streuprozess in der Probe an“, sagt Bernhard Zachhuber. Diese gestreuten Lichtteilchen wiederum verteilen sich gleichmäßig in alle Richtungen. Nur ein winziger Bruchteil gelangt von der Probe zum Licht-Detektor. Aus diesem schwachen Signal muss möglichst viel Information herausgelesen werden. Das gelingt mit Hilfe eines leistungsfähigen Teleskops und hochempfindlichen Licht-Sensoren.

Die Forschungsgruppe an der TU Wien kooperierte bei diesem EU-Projekt von Anfang an mit der Industrie und mit potenziellen Anwendern aus dem Bereich der öffentlichen Sicherheit: Die spanische „Guardia Civil“ zeigte sich von Beginn an interessiert, im Zuge der Arbeiten konnte auch das österreichische Bundesheer war in die Forschungsarbeiten in Wien eingebunden werden. Auf einem Gelände des Bundesheeres konnte das Team der TU Wien ausprobieren, auf welche Distanzen sich Chemikalien auf diese Weise identifizieren lassen. Unter den getesteten Proben waren häufig verwendete Sprengstoffe wie TNT, ANFO oder Hexogen. Die Versuche verliefen äußert vielversprechend: „Selbst bei einem Abstand von über hundert Metern lassen sich die Substanzen noch zuverlässig nachweisen“, berichtet Engelene Chrysostom (TU Wien).

Ich messe was, was du nicht siehst ...

Die Raman-Spektroskopie auf großen Distanzen funktioniert sogar, wenn die untersuchte Probe in einem undurchsichtigen Container versteckt ist. Der Laserstrahl wird zwar am Container gestreut, dringt aber teilweise auch ins Innere ein. Im Probematerial kommt es also immer noch zu Raman-Streuprozessen. „Die Schwierigkeit liegt darin, das Lichtsignal des Behälters vom Lichtsignal der Probe im Inneren zu unterscheiden“, sagt Bernhard Lendl. Das gelingt mit einem einfachen geometrischen Trick: Der Laserstrahl trifft auf einem kleinen, fokussierten Punkt am Container auf, verbreitert sich dann im Inneren aber stark. Das Lichtsignal, das vom Behälter kommt, geht also von einem geometrisch eng begrenzten Bereich aus, das schwache Lichtsignal des Inhalts wird von einem größeren Bereich ausgesandt. Richtet man also das Mess-Teleskop also nicht genau auf die Laser-Auftreffstelle, sondern ein Stück davon weg, misst man das charakteristische Lichtsignal des Inhalts – nicht das der Verpackung.

Vom Flughafen bis zum Mars

Die neue Methode könnte Sicherheitskontrollen auf Flughäfen einfacher machen – doch das mögliche Anwendungsgebiet ist noch viel größer. Raman-Spektroskopie auf große Distanzen ist überall dort interessant, wo es schwierig ist, ganz nah an das Untersuchungsobjekt heranzukommen. Für die Untersuchung von Eisbergen kann das genauso nützlich sein wie für Gesteinsuntersuchungen bei Mars-Missionen. Auch in der chemischen Industrie gibt es für solche Methoden ein breites Einsatzgebiet. Die Anmeldung zum Patent durch die TU Wien ist bereits erfolgt.

Rückfragehinweise:

Ao. Prof. Bernhard Lendl
Institut für Chemische Technologien und Analytik
Technische Universität Wien
Getreidemarkt 9, 1060 Wien
T: +43-1-58801-15140
bernhard.lendl@tuwien.ac.at
Engelene Chrysostom, PhD
Institut für Chemische Technologien und Analytik
Technische Universität Wien
Getreidemarkt 9, 1060 Wien
T: +43-1-58801-15145
engelene.chrysostom@tuwien.ac.at

Dr. Florian Aigner | idw
Weitere Informationen:
http://www.tuwien.ac.at/dle/pr/aktuelles/downloads/2012/sprengstoff/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Vorstoß ins Innere der Atome
23.02.2018 | Max-Planck-Institut für Quantenoptik

nachricht Quanten-Wiederkehr: Alles wird wieder wie früher
23.02.2018 | Technische Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics