Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Laserpulse helfen Forschern, komplexe Elektronenwechselwirkungen zu entflechten

20.12.2016

Zeitaufgelöste „Stop-Motion“-Aufnahmen und anspruchsvolle theoretische Simulationen enthüllen eine ungewöhnliche Form von Energieverlust

Die Eigenschaften komplexer Quanten-Materialien zu verstehen, ist eines der bedeutendsten Ziele der Physik kondensierter Materie und der Materialwissenschaften, da Effekte wie Hochtemperatursupraleitung zu einer Vielzahl von Anwendungen führen könnten.


Ein Laserpuls regt ein Material an; ein zweiter Puls schießt Elektronen heraus, die zum Detektor fliegen. Diese Bilder erlauben es Forschern, fundamentale Wechselwirkungen in Festkörpern zu verstehen.

© Brian Moritz / SLAC

Nun hat ein internationales Team von Wissenschaftlern, zu dem auch Emmy Noether-Gruppenleiter Michael Sentef vom Max-Planck-Institut für Struktur und Dynamik der Materie am CFEL in Hamburg gehört, eine neue lasergetriebene „Stop-Motion“-Methode für die Untersuchung komplexer Elektronenwechselwirkungen unter dynamischen Bedingungen vorgestellt. Es wird erwartet, dass die Erkenntnisse, welche heute in der Fachzeitschrift Nature Communications veröffentlicht wurden, das Verständnis der physikalischen Prozesse verbessern, die zu emergenten Phänomenen in stark korrelierten Materialien führen.

Wissenschaftler, die Hochtemperatursupraleiter erforschen – Materialien, die elektrischen Strom bei Kühlung unter eine bestimmte Temperatur ohne Energieverlust transportieren – sind seit jeher auf der Suche nach Wegen, um die Elektronenwechselwirkungen, welche für diese vielversprechende Eigenschaft verantwortlich gemacht werden, detailliert zu untersuchen. Eine große Herausforderung liegt darin, die vielen unterschiedlichen Wechselwirkungen zu entwirren – also beispielsweise die Effekte der Wechselwirkung der Elektronen untereinander von den Effekten ihrer Wechselwirkungen mit den Atomen im Material zu trennen.

In der aktuellen Studie verwendeten die Forscher einen sehr schnellen, intensiven „Pump“-Laser, um Elektronen einen Energiestoß zu geben, und einen zweiten „Probe“-Laser, um das Energieniveau der Elektronen und ihre Bewegungsrichtung zu vermessen während sie in ihren Ausgangszustand zurückkehren. „Durch Variation der Zeit zwischen dem Pump- und dem Probe-Laser können wir eine stroboskopische Aufnahme des Geschehens erstellen – einen Film des Materials vom Ruhezustand über die heftige Wechselwirkung bis hin zur Rückkehr in den Ausgangszustand“, sagte Jonathan Rameau, Physiker am Brookhaven National Laboratory und einer der Hauptautoren der Arbeit. „Es ist als ließe man eine Bowlingkugel in einen Wassereimer fallen, um eine große Störung zu erzeugen, und machte zu verschiedenen Zeiten danach Aufnahmen“, erklärte er.

Diese Methode, bekannt als zeit- und winkelaufgelöste Photoelektronenspektroskopie (time-resolved, angle-resolved photoelectron spectroscopy, tr-ARPES), in Kombination mit komplexen theoretischen Simulationen und Analyse, erlaubte es dem Team, die Reihenfolge und die energetischen Signaturen verschiedener Arten von Elektronenwechselwirkungen herauszufiltern. So gelang es ihnen, eindeutige Signale von Wechselwirkungen zwischen angeregten Elektronen (welche sich schnell abspielen, aber nicht viel Energie zerstreuen) sowie später stattfindenden zufälligen Wechselwirkungen zwischen Elektronen und den Atomen des Kristallgitters (welche Reibung erzeugen und zu schrittweisem Energieverlust in Form von Wärme führen) zu selektieren.

Aber sie entdeckten auch ein anderes, unerwartetes Signal – das ihrer Aussage nach eine neue Form extrem effizienten Energieverlustes darstellt – bei einem bestimmten Energieniveau und einer Zeitskala zwischen den anderen beiden.

„Wir sehen eine sehr starke und besondere Wechselwirkung zwischen den angeregten Elektronen und dem Gitter, bei der die Elektronen einen Großteil ihrer Energie sehr schnell auf kohärente, nichtzufällige Weise verlieren“, sagte Rameau. Bei diesem speziellen Energieniveau scheinen die Elektronen alle mit den Gitteratomen bei einer bestimmten Frequenz zu wechselwirken – wie eine Stimmgabel, die auf ihrer Resonanz einen Ton spielt. Wenn alle Elektronen, welche die richtige Energie für diese spezielle Wechselwirkung besitzen, den Großteil ihrer Anregungsenergie abgegeben haben, beginnen sie langsamer zu kühlen, und zwar mittels zufälligerer Prozesse, die nicht die Resonanzfrequenz benötigen. Die Resonanzfrequenz dieses Prozesses ist besonders bemerkenswert, da sie mit der Energie eines „Knickes“ in der Energiedispersion desselben Materials übereinstimmt, der zuvor in seinem supraleitenden Zustand mittels einer statischen Form von ARPES gefunden worden war.

Zu jener Zeit vermuteten die Wissenschaftler, dass der Knick etwas mit der Supraleitung des Materials zu tun haben könnte. Dasselbe Signal wurde oberhalb der kritischen Sprungtemperatur für Supraleitung nicht eindeutig nachgewiesen. Die neuen Experimente jedoch, die deutlich oberhalb der supraleitenden Temperatur durchgeführt wurden, konnten das subtile Signal herauskitzeln. Diese neuen Ergebnisse legen nahe, dass diese speziellen Umstände für die Resonanz existieren, selbst wenn das Material nicht supraleitend ist. „Wir wissen jetzt, dass die Wechselwirkung für die Resonanz nicht erst einsetzt, wenn das Material supraleitend wird; sie ist tatsächlich immer vorhanden“, sagte Rameau.

Michael Sentef, der die experimentellen Aktivitäten durch numerische Simulationen ergänzte, betonte den Einfluss dieser Arbeit auf das Feld der „Pump-Probe“-Spektroskopie. „Diese Arbeit zeigt deutlich, dass wir Fortschritte im theoretischen Verständnis von Systemen fern des thermischen Gleichgewichts gemacht haben, so dass wir jetzt quantitative Vorhersagen treffen können“, sagte er. „Diese Einsicht ist eine große Motivation für künftige Projekte, in denen wir uns mit noch komplexeren Situationen beschäftigen, zum Beispiel wenn Laserpulse genutzt werden, um supraleitungsartige Zustände bei hohen Temperaturen zu erzeugen“, ergänzte Sentef. In einer kürzlich veröffentlichten Arbeit [Mitrano et al., Nature 530, 461–464 (2016)] beobachtete ein Team um MPSD-Direktor Andrea Cavalleri lichtinduzierte supraleitungsartige Eigenschaften in dem Material K3C60.

Ansprechpartner:

Dr. Michael A. Sentef
Max-Planck-Institut für Struktur und Dynamik der Materie
Center for Free-Electron Laser Science
Luruper Chaussee 149
22761 Hamburg
Germany
+49 (0)40 8998-6552
michael.sentef@mpsd.mpg.de

Originalpublikation:

J. D. Rameau, S. Freutel, A. F. Kemper, M. A. Sentef, J. K. Freericks, I. Avigo, M. Ligges, L. Rettig, Y. Yoshida, H. Eisaki, J. Schneeloch, R. D. Zhong, Z. J. Xu, G. D. Gu, P. D. Johnson, and U. Bovensiepen, "Energy Dissipation from a Correlated System Driven Out of Equilibrium," Nature Communications (2016), DOI: 10.1038/ncomms13761

Weitere Informationen:

http://dx.doi.org/10.1038/ncomms13761 Originalpublikation
http://dx.doi.org/10.1038/nature16522 Mitrano et al., Nature 530, 461–464 (2016)
http://www.mpsd.mpg.de/forschung/theo Forschungsgruppe von Prof. Dr. Angel Rubio
http://www.mpsd.mpg.de Max-Planck-Institut für Struktur und Dynamik der Materie

Dr. Michael Grefe | Max-Planck-Institut für Struktur und Dynamik der Materie

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht APEX wirft einen Blick ins Herz der Finsternis
25.05.2018 | Max-Planck-Institut für Radioastronomie

nachricht Matrix-Theorie als Ursprung von Raumzeit und Kosmologie
23.05.2018 | Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Starke IT-Sicherheit für das Auto der Zukunft – Forschungsverbund entwickelt neue Ansätze

Je mehr die Elektronik Autos lenkt, beschleunigt und bremst, desto wichtiger wird der Schutz vor Cyber-Angriffen. Deshalb erarbeiten 15 Partner aus Industrie und Wissenschaft in den kommenden drei Jahren neue Ansätze für die IT-Sicherheit im selbstfahrenden Auto. Das Verbundvorhaben unter dem Namen „Security For Connected, Autonomous Cars (SecForCARs) wird durch das Bundesministerium für Bildung und Forschung mit 7,2 Millionen Euro gefördert. Infineon leitet das Projekt.

Bereits heute bieten Fahrzeuge vielfältige Kommunikationsschnittstellen und immer mehr automatisierte Fahrfunktionen, wie beispielsweise Abstands- und...

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Mit Hilfe molekularer Schalter lassen sich künftig neuartige Bauelemente entwickeln

Einem Forscherteam unter Führung von Physikern der Technischen Universität München (TUM) ist es gelungen, spezielle Moleküle mit einer angelegten Spannung zwischen zwei strukturell unterschiedlichen Zuständen hin und her zu schalten. Derartige Nano-Schalter könnten Basis für neuartige Bauelemente sein, die auf Silizium basierende Komponenten durch organische Moleküle ersetzen.

Die Entwicklung neuer elektronischer Technologien fordert eine ständige Verkleinerung funktioneller Komponenten. Physikern der TU München ist es im Rahmen...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: GRACE Follow-On erfolgreich gestartet: Das Satelliten-Tandem dokumentiert den globalen Wandel

Die Satellitenmission GRACE-FO ist gestartet. Am 22. Mai um 21.47 Uhr (MESZ) hoben die beiden Satelliten des GFZ und der NASA an Bord einer Falcon-9-Rakete von der Vandenberg Air Force Base (Kalifornien) ab und wurden in eine polare Umlaufbahn gebracht. Dort nehmen sie in den kommenden Monaten ihre endgültige Position ein. Die NASA meldete 30 Minuten später, dass der Kontakt zu den Satelliten in ihrem Zielorbit erfolgreich hergestellt wurde. GRACE Follow-On wird das Erdschwerefeld und dessen räumliche und zeitliche Variationen sehr genau vermessen. Sie ermöglicht damit präzise Aussagen zum globalen Wandel, insbesondere zu Änderungen im Wasserhaushalt, etwa dem Verlust von Eismassen.

Potsdam, 22. Mai 2018: Die deutsch-amerikanische Satellitenmission GRACE-FO (Gravity Recovery And Climate Experiment Follow On) ist erfolgreich gestartet. Am...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Im Fokus: Klimaangepasste Pflanzen

25.05.2018 | Veranstaltungen

Größter Astronomie-Kongress kommt nach Wien

24.05.2018 | Veranstaltungen

22. Business Forum Qualität: Vom Smart Device bis zum Digital Twin

22.05.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Berufsausbildung mit Zukunft

25.05.2018 | Unternehmensmeldung

Untersuchung der Zellmembran: Forscher entwickeln Stoff, der wichtigen Membranbestandteil nachahmt

25.05.2018 | Interdisziplinäre Forschung

Starke IT-Sicherheit für das Auto der Zukunft – Forschungsverbund entwickelt neue Ansätze

25.05.2018 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics