Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Laserpulse ermöglichen die Steuerung chemischer Prozesse

23.04.2014

Die leichten Elektronen werden beeinflusst, die trägen Atomkerne spüren den Laser kaum. An der TU Wien gelingt es mit extrem kurzen Laserpulsen, chemische Reaktionen zu steuern.

Normalerweise laufen chemische Reaktionen ganz von selbst ab – ganz ähnlich wie eine Kugel immer nach unten rollt. Doch man kann chemische Reaktionen auch gezielt steuern. An der TU Wien verändert man mit Laserpulsen im Femtosekunden-Bereich die Verteilung der Elektronen im Molekül.


Kurze Laserpulse interagieren mit Ethylen

TU Wien


Laserverstärker zur Herstellung intensiver, ultrakurzer Lichtpulse

TU Wien

Weil dieser Eingriff so extrem kurz ist, hat er zunächst kaum einen Einfluss auf die Atomkerne, die viel träger sind als die Elektronen. Trotzdem werden durch die gezielte Störung der Elektronenverteilung chemische Vorgänge eingeleitet und die Atomkerne letztlich voneinander getrennt. Die Eigenschaften des Laserpulses bestimmen, welche chemischen Endprodukte schließlich entstehen.

Neue Form des Eingriffs in chemische Abläufe

In der Chemie kann man sich zwar aussuchen, welche Moleküle man miteinander in Kontakt bringt – doch zu welcher Reaktion es dann tatsächlich kommt, hängt von den beteiligten Molekülen und eventuell von der Umgebungstemperatur ab. Den Ablauf der Reaktion selbst kann man normalerweise nicht direkt beeinflussen. Ein Forschungsteam vom Institut für Photonik der TU Wien konnte nun aber die Aufspaltung von Kohlenwasserstoffen wie Ethylen (C2H4) oder Acetylen (C2H2) in kleinere Bruchstücke mit Laserpulsen gezielt herbeiführen.

„Wir verwenden dazu zwei verschiedene Laserpulse“, erklärt Markus Kitzler. „Der erste Laserpuls dauert etwa 50 Femtosekunden und versetzt die Moleküle in unterschiedlich schnelle Drehung.“ Nach kurzer Zeit haben sich dann die Moleküle alle in ungefähr derselben Richtung ausgerichtet – dann folgt der zweite Laserpuls, der mit weniger als fünf Femtosekunden nicht einmal zwei Lichtschwingungen dauert. Dieser Puls ändert den Zustand der Elektronen, er kann sogar Elektronen aus dem Molekül herausreißen.

Eingriff in den Reaktionspfad

Elektronen sind viel leichter als Atomkerne. Daher lassen sich zwar die Elektronen im Molekül durch einen ultrakurzen Laserpuls ganz dramatisch beeinflussen, die schweren Atomkerne hingegen sind viel zu träge, um sich in dieser kurzen Zeit merklich zu bewegen.

Werden allerdings genau die richtigen Elektronen aus dem Molekül entfernt, lässt sich erreichen, dass das Molekül an einer gewünschten Stelle auseinanderbricht, so dass etwa aus Acetylen (C2H2), CH2+, CH+, oder Kohlenstoff-Ionen (C+) entstehen. „Verschiedene Reaktionspfade sind möglich, wir können diese Pfade nun erstmals voneinander unterscheiden und gezielt steuern, welcher Pfad eingeschlagen werden soll“, erklärt Markus Kitzler.

Ein extrem kurzer Lichtblitz – fünf Femtosekunden (5.10^-15 Sekunden) sind bloß fünf Millionstel einer Milliardstelsekunde) – löst einen chemischen Prozess aus, dessen Ablauf eigentlich viel länger dauert, ähnlich wie eine sehr kurze Explosion an genau den richtigen Stellen ein großes Gebäude zuerst zum Wanken und nach einer gewissen Zeit schließlich zum Einstürzen bringen kann.

Die Zusammensetzung der chemischen Endprodukte lässt sich durch eine ganze Reihe von Parametern steuern: Die Ausrichtung der Moleküle durch den ersten Laserpuls, die Dauer und Intensität des zweiten Pulses, der die Moleküle ionisiert.

Durchgeführt wurden die Experimente im Team von Markus Kitzler. Federführend beteiligt an der Analyse der Daten war Xinhua Xie, Post-Doc am Institut für Photonik. Unterstützung in der Modellierung der beobachteten Prozesse, ohne die solch tiefe Einsichten nicht möglich gewesen wären, bekam die Forschungsgruppe von Katharina Doblhoff-Dier und Prof. Stefanie Gräfe von der Universität Jena, sowie von Erik Lötstedt, Mitarbeiter von Prof. Yamanouchi an der Universität Tokyo.

Die Forschungsergebnisse wurden nun in zwei Publikationen veröffentlicht – im Fachjournal „Physical Review Letters“, sowie in „Physical Review X“.

Rückfragehinweis:
Dr. Markus Kitzler-Zeiler
Institut für Photonik
Technische Universität Wien
Gusshausstraße 25-29, 1040 Wien
T: +43-1-58801-38772
markus.kitzler@tuwien.ac.at

Weitere Informationen:

http://journals.aps.org/prx/abstract/10.1103/PhysRevX.4.021005 Originalpulikation in PRX

Dr. Florian Aigner | Technische Universität Wien

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Freie Elektronen in Sonnen-Protuberanzen untersucht
25.07.2017 | Georg-August-Universität Göttingen

nachricht Magnetische Quantenobjekte im "Nano-Eierkarton": PhysikerInnen bauen künstliche Fallen für Fluxonen
25.07.2017 | Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kohlenstoff-Nanoröhrchen verwandeln Strom in leuchtende Quasiteilchen

Starke Licht-Materie-Kopplung in diesen halbleitenden Röhrchen könnte zu elektrisch gepumpten Lasern führen

Auch durch Anregung mit Strom ist die Erzeugung von leuchtenden Quasiteilchen aus Licht und Materie in halbleitenden Kohlenstoff-Nanoröhrchen möglich....

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Breitbandlichtquellen mit flüssigem Kern

Jenaer Forschern ist es gelungen breitbandiges Laserlicht im mittleren Infrarotbereich mit Hilfe von flüssigkeitsgefüllten optischen Fasern zu erzeugen. Mit den Fasern lieferten sie zudem experimentelle Beweise für eine neue Dynamik von Solitonen – zeitlich und spektral stabile Lichtwellen – die aufgrund der besonderen Eigenschaften des Flüssigkerns entsteht. Die Ergebnisse der Arbeiten publizierte das Jenaer Wissenschaftler-Team vom Leibniz-Instituts für Photonische Technologien (Leibniz-IPHT), dem Fraunhofer-Insitut für Angewandte Optik und Feinmechanik, der Friedrich-Schiller-Universität Jena und des Helmholtz-Insituts im renommierten Fachblatt Nature Communications.

Aus einem ultraschnellen intensiven Laserpuls, den sie in die Faser einkoppeln, erzeugen die Wissenschaftler ein, für das menschliche Auge nicht sichtbares,...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

2. Spitzentreffen »Industrie 4.0 live«

25.07.2017 | Veranstaltungen

Gipfeltreffen der String-Mathematik: Internationale Konferenz StringMath 2017

24.07.2017 | Veranstaltungen

Von atmosphärischen Teilchen bis hin zu Polymeren aus nachwachsenden Rohstoffen

24.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

IT-Experten entdecken Chancen für den Channel-Markt

25.07.2017 | Unternehmensmeldung

Erst hot dann Schrott! – Elektronik-Überhitzung effektiv vorbeugen

25.07.2017 | Seminare Workshops

Dichtes Gefäßnetz reguliert Bildung von Thrombozyten im Knochenmark

25.07.2017 | Biowissenschaften Chemie