Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Laserpuls wird ganz von selbst kürzer und intensiver

27.01.2015

Ultrakurze Laserpulse sind zum unverzichtbaren Werkzeug für Atom- und Molekülforschung geworden. Eine neue Technologie ermöglicht es nun, auf einfache und billige Weise Infrarot-Laserpulse zu erzeugen.

Bei einem Marathonlauf startet jeder ungefähr zur selben Zeit ungefähr am selben Ort. Doch wer schneller läuft wird sich im Lauf der Zeit vom Rest absetzen und am Ende gibt es eine sehr breite Verteilung von Läufern auf einem langen Abschnitt der Straße.


Licht wird durch die dünne Faser geleitet

TU Wien

Etwas Ähnliches passiert, wenn man einen Lichtpuls durch ein Medium schickt. Der Puls ist eine Kombination aus unterschiedlichen Farben (bzw. unterschiedlichen Wellenlängen), und wenn sie durch ein Medium wie Glas geschickt werden, bewegen sie sich mit geringfügig unterschiedlichen Geschwindigkeiten fort. Das führt zu einem Dispersions-Effekt: Der Puls wird immer länger.

Doch es gibt Möglichkeiten, diesen Effekt umzukehren: Man kann ein optisches Medium auch nutzen, um den Puls kürzer zu machen. Ein Forschungsteam der TU Wien hat nun einen Weg gefunden, aus einem sehr intensiven Laserpuls mit einer Dauer von 80 Femtosekunden einen Puls von bloß 4.5 Femtosekunden zu machen – einfach indem man ihn durch eine speziell konstruierte hohle Faser schickt. Diese Technologie ist kompakter, einfacher und billiger als die Verfahren, die man dafür bisher verwendet hat. Publiziert wurde die neue Methode nun im Journal „Nature Communications“.

Hohle Faser, gefüllt mit Gas

Der Infrarot-Laserpuls wird durch eine hohle Faser geschickt, die mit Gas gefüllt ist. „Die nichtlineare Wechselwirkung zwischen dem Licht und den Gasatomen bewirkt, dass unterschiedliche Wellenlängen mit unterschiedlicher Geschwindigkeit unterwegs sind“, sagt Tadas Balciunas von der TU Wien.

Die Komponenten mit größerer Wellenlänge sind schneller als die kurzen Wellenlängen. Innerhalb der Glasfaser allerdings befindet sich eine komplexe Nanostruktur, die kurze Wellenlängen schneller vorankommen lässt als längere.

„Die Kombination dieser beiden einander widersprechenden Effekte führt dazu, dass der Laserpuls komprimiert wird“, sagt Tadas Balciunas. Es ist als würde man eine lange Reihe von Marathonläufern starten lassen, und am Ende kommen sie alle gleichzeitig am Ziel an. Der resultierende Lichtpuls ist nicht nur kurz, sondern auch extrem intensiv: Er erreicht eine Leistung von einem Gigawatt.

Die Nanostruktur in der Faser heißt „Kagome“ – ein japanisches Wort für ein Korbgeflecht. Diese spezielle Struktur, die eine ungestörte Transmission der extrem kurzen Pulse erlaubt, wurde von der Forschungsgruppe von Frederic Gerome in Limoges (Frankreich) entwickelt und hergestellt.

Seit Jahren werden extrem kurze Laserpulse verwendet, um den Geheimnissen der Quanten-Welt auf die Spur zu kommen. Sie können Elektronen aus ihren Atomen herausreißen, Elektronen beschleunigen oder die Dynamik chemischer Reaktionen abbilden. Bis heute benötigte man aber sehr komplizierte Versuchsaufbauten um solche Femtosekunden-Laser zu erzeugen.

„Normalerweise müssen die unterschiedlichen Wellenlängen des Pulses mit einem aufwändigen Spiegelsystem manipuliert werden, um den Puls zu komprimieren“, sagt Tadas Balciunas. „Unser einfaches Tischgerät soll es nun Forschungslabors auf der ganzen Welt viel einfacher und billiger machen, Femtosekunden-Infrarotpulse herzustellen.“

Neues Werkzeug für neue Forschung

In der neuen Publikation konnte das Team bereits zeigen, dass der Laserpuls für höchst komplexe Experimente bestens geeignet ist: Er wurde auf ein Xenon-Gas-Target abgefeuert, sodass die Xenon-Atome ionisiert wurden. Abhängig von der genauen Form des Pulses können die Elektronen, die den Xenon-Atomen entrissen werden, in unterschiedliche Richtungen geschickt werden. „Es ist ein ultraschneller Elektronen-Schalter“, erklärt Tadas Balciunas.

Das Photonik-Team der TU Wien plant, diese Technologie für viele weitere Experimente zu nutzen und geht davon aus, dass auch viele andere Forschungsgruppen die neue Idee aufgreifen werden. „Ein Femtosekunden-Lasersystem, das billig, klein und einfach zu benutzen ist, könnte der ultraschnellen Laserforschung einen Auftrieb geben“, sagt Tadas Balciunas.

Rückfragehinweis:
Dr. Tadas Balciunas
Institut für Photonik
Technische Universität Wien
Gusshausstraße 25-29, 1040 Wien
+43-1-58801-38777
tadas.balciunas@tuwien.ac.at

Weitere Informationen:

http://www.tuwien.ac.at/dle/pr/aktuelles/downloads/2015/kagome/ weitere Bilder

Dr. Florian Aigner | Technische Universität Wien

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Raumschrott im Fokus
22.05.2018 | Universität Bern

nachricht Countdown für Kilogramm, Kelvin und Co.
18.05.2018 | Physikalisch-Technische Bundesanstalt (PTB)

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Bose-Einstein-Kondensat im Riesenatom - Universität Stuttgart untersucht exotisches Quantenobjekt

Passt eine ultrakalte Wolke aus zehntausenden Rubidium-Atomen in ein einzelnes Riesenatom? Forscherinnen und Forschern am 5. Physikalischen Institut der Universität Stuttgart ist dies erstmals gelungen. Sie zeigten einen ganz neuen Ansatz, die Wechselwirkung von geladenen Kernen mit neutralen Atomen bei weitaus niedrigeren Temperaturen zu untersuchen, als es bisher möglich war. Dies könnte einen wichtigen Schritt darstellen, um in Zukunft quantenmechanische Effekte in der Atom-Ion Wechselwirkung zu studieren. Das renommierte Fachjournal Physical Review Letters und das populärwissenschaftliche Begleitjournal Physics berichteten darüber.*)

In dem Experiment regten die Forscherinnen und Forscher ein Elektron eines einzelnen Atoms in einem Bose-Einstein-Kondensat mit Laserstrahlen in einen riesigen...

Im Focus: Algorithmen für die Leberchirurgie – weltweit sicherer operieren

Die Leber durchlaufen vier komplex verwobene Gefäßsysteme. Die chirurgische Entfernung von Tumoren ist daher oft eine schwierige Aufgabe. Das Fraunhofer-Institut für Bildgestützte Medizin MEVIS hat Algorithmen entwickelt, die die Bilddaten von Patienten analysieren und chirurgische Risiken berechnen. Leberkrebsoperationen werden damit besser planbar und sicherer.

Jährlich erkranken weltweit 750.000 Menschen neu an Leberkrebs, viele weitere entwickeln Lebermetastasen aufgrund anderer Krebserkrankungen. Ein chirurgischer...

Im Focus: Positronen leuchten besser

Leuchtstoffe werden schon lange benutzt, im Alltag zum Beispiel im Bildschirm von Fernsehgeräten oder in PC-Monitoren, in der Wissenschaft zum Untersuchen von Plasmen, Teilchen- oder Antiteilchenstrahlen. Gleich ob Teilchen oder Antiteilchen – treffen sie auf einen Leuchtstoff auf, regen sie ihn zum Lumineszieren an. Unbekannt war jedoch bisher, dass die Lichtausbeute mit Elektronen wesentlich niedriger ist als mit Positronen, ihren Antiteilchen. Dies hat Dr. Eve Stenson im Max-Planck-Institut für Plasmaphysik (IPP) in Garching und Greifswald jetzt beim Vorbereiten von Experimenten mit Materie-Antimaterie-Plasmen entdeckt.

„Wäre Antimaterie nicht so schwierig herzustellen, könnte man auf eine Ära hochleuchtender Niederspannungs-Displays hoffen, in der die Leuchtschirme nicht von...

Im Focus: Erklärung für rätselhafte Quantenoszillationen gefunden

Sogenannte Quanten-Vielteilchen-„Scars“ lassen Quantensysteme länger außerhalb des Gleichgewichtszustandes verweilen. Studie wurde in Nature Physics veröffentlicht

Forschern der Harvard Universität und des MIT war es vor kurzem gelungen, eine Rekordzahl von 53 Atomen einzufangen und ihren Quantenzustand einzeln zu...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

48V im Fokus!

21.05.2018 | Veranstaltungen

„Data Science“ – Theorie und Anwendung: Internationale Tagung unter Leitung der Uni Paderborn

18.05.2018 | Veranstaltungen

Visual-Computing an Bord der MS Wissenschaft

17.05.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

48V im Fokus!

21.05.2018 | Veranstaltungsnachrichten

Bose-Einstein-Kondensat im Riesenatom - Universität Stuttgart untersucht exotisches Quantenobjekt

18.05.2018 | Physik Astronomie

Countdown für Kilogramm, Kelvin und Co.

18.05.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics