Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Laserpuls wird ganz von selbst kürzer und intensiver

27.01.2015

Ultrakurze Laserpulse sind zum unverzichtbaren Werkzeug für Atom- und Molekülforschung geworden. Eine neue Technologie ermöglicht es nun, auf einfache und billige Weise Infrarot-Laserpulse zu erzeugen.

Bei einem Marathonlauf startet jeder ungefähr zur selben Zeit ungefähr am selben Ort. Doch wer schneller läuft wird sich im Lauf der Zeit vom Rest absetzen und am Ende gibt es eine sehr breite Verteilung von Läufern auf einem langen Abschnitt der Straße.


Licht wird durch die dünne Faser geleitet

TU Wien

Etwas Ähnliches passiert, wenn man einen Lichtpuls durch ein Medium schickt. Der Puls ist eine Kombination aus unterschiedlichen Farben (bzw. unterschiedlichen Wellenlängen), und wenn sie durch ein Medium wie Glas geschickt werden, bewegen sie sich mit geringfügig unterschiedlichen Geschwindigkeiten fort. Das führt zu einem Dispersions-Effekt: Der Puls wird immer länger.

Doch es gibt Möglichkeiten, diesen Effekt umzukehren: Man kann ein optisches Medium auch nutzen, um den Puls kürzer zu machen. Ein Forschungsteam der TU Wien hat nun einen Weg gefunden, aus einem sehr intensiven Laserpuls mit einer Dauer von 80 Femtosekunden einen Puls von bloß 4.5 Femtosekunden zu machen – einfach indem man ihn durch eine speziell konstruierte hohle Faser schickt. Diese Technologie ist kompakter, einfacher und billiger als die Verfahren, die man dafür bisher verwendet hat. Publiziert wurde die neue Methode nun im Journal „Nature Communications“.

Hohle Faser, gefüllt mit Gas

Der Infrarot-Laserpuls wird durch eine hohle Faser geschickt, die mit Gas gefüllt ist. „Die nichtlineare Wechselwirkung zwischen dem Licht und den Gasatomen bewirkt, dass unterschiedliche Wellenlängen mit unterschiedlicher Geschwindigkeit unterwegs sind“, sagt Tadas Balciunas von der TU Wien.

Die Komponenten mit größerer Wellenlänge sind schneller als die kurzen Wellenlängen. Innerhalb der Glasfaser allerdings befindet sich eine komplexe Nanostruktur, die kurze Wellenlängen schneller vorankommen lässt als längere.

„Die Kombination dieser beiden einander widersprechenden Effekte führt dazu, dass der Laserpuls komprimiert wird“, sagt Tadas Balciunas. Es ist als würde man eine lange Reihe von Marathonläufern starten lassen, und am Ende kommen sie alle gleichzeitig am Ziel an. Der resultierende Lichtpuls ist nicht nur kurz, sondern auch extrem intensiv: Er erreicht eine Leistung von einem Gigawatt.

Die Nanostruktur in der Faser heißt „Kagome“ – ein japanisches Wort für ein Korbgeflecht. Diese spezielle Struktur, die eine ungestörte Transmission der extrem kurzen Pulse erlaubt, wurde von der Forschungsgruppe von Frederic Gerome in Limoges (Frankreich) entwickelt und hergestellt.

Seit Jahren werden extrem kurze Laserpulse verwendet, um den Geheimnissen der Quanten-Welt auf die Spur zu kommen. Sie können Elektronen aus ihren Atomen herausreißen, Elektronen beschleunigen oder die Dynamik chemischer Reaktionen abbilden. Bis heute benötigte man aber sehr komplizierte Versuchsaufbauten um solche Femtosekunden-Laser zu erzeugen.

„Normalerweise müssen die unterschiedlichen Wellenlängen des Pulses mit einem aufwändigen Spiegelsystem manipuliert werden, um den Puls zu komprimieren“, sagt Tadas Balciunas. „Unser einfaches Tischgerät soll es nun Forschungslabors auf der ganzen Welt viel einfacher und billiger machen, Femtosekunden-Infrarotpulse herzustellen.“

Neues Werkzeug für neue Forschung

In der neuen Publikation konnte das Team bereits zeigen, dass der Laserpuls für höchst komplexe Experimente bestens geeignet ist: Er wurde auf ein Xenon-Gas-Target abgefeuert, sodass die Xenon-Atome ionisiert wurden. Abhängig von der genauen Form des Pulses können die Elektronen, die den Xenon-Atomen entrissen werden, in unterschiedliche Richtungen geschickt werden. „Es ist ein ultraschneller Elektronen-Schalter“, erklärt Tadas Balciunas.

Das Photonik-Team der TU Wien plant, diese Technologie für viele weitere Experimente zu nutzen und geht davon aus, dass auch viele andere Forschungsgruppen die neue Idee aufgreifen werden. „Ein Femtosekunden-Lasersystem, das billig, klein und einfach zu benutzen ist, könnte der ultraschnellen Laserforschung einen Auftrieb geben“, sagt Tadas Balciunas.

Rückfragehinweis:
Dr. Tadas Balciunas
Institut für Photonik
Technische Universität Wien
Gusshausstraße 25-29, 1040 Wien
+43-1-58801-38777
tadas.balciunas@tuwien.ac.at

Weitere Informationen:

http://www.tuwien.ac.at/dle/pr/aktuelles/downloads/2015/kagome/ weitere Bilder

Dr. Florian Aigner | Technische Universität Wien

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Waschen für die Mikrowelt – Potsdamer Physiker entwickeln lichtempfindliche Seife
02.12.2016 | Universität Potsdam

nachricht Quantenreibung: Jenseits der Näherung des lokalen Gleichgewichts
01.12.2016 | Forschungsverbund Berlin e.V.

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie