Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mit Laserpuls auf das einzelne Molekül

06.02.2012
Physikern am MPQ gelingt es, die innere Dynamik einzelner Moleküle mit Femtosekundenpulsen im UV-Bereich zu aufzulösen.

Große Lasersysteme liefern heute ultrakurze und hochintensive Lichtpulse, die es im Prinzip erlauben, Materie und ihre Dynamik auf atomaren Skalen abzubilden, bis hin zu einzelnen Viren oder Molekülen.


Abb.: (links) „Kristall“ aus fluoreszierenden Ionen. Der mit dem Molekül besetzte Gitterplatz (weißer Kreis) bleibt dunkel. (rechts) Die Zerfallswahrscheinlichkeit ist deutlich mit einer Periode 30 Femtosekunden moduliert.
Foto und Grafik: MPQ

Aber bisher war es nicht möglich, solche Pulse zielgenau einem einzelnen Molekül zu überlagern. Die Gruppe von Prof. Tobias Schätz am Max-Planck-Institut für Quantenoptik (Garching bei München) hat nun einen Ausweg aus diesem Dilemma gefunden. Die Physiker speichern die einzelnen Moleküle mit der bewährten Ionenfallentechnik und beschießen sie dann mit hochintensiven Femtosekunden-Pulsen, die ihnen das Labor für Attosekundenphysik am MPQ zur Verfügung stellt (Nature Physics, AOP, 5. Februar 2012, DOI 10.1038/NPHYS2214).

Mit den Lichtpulsen im UV-Bereich, die sie derzeit verwenden, können sie die innere Schwingungsdynamik eines einzelnen Magnesiumhydrid-Moleküls, das aus zwei Atomen besteht, auflösen. „Wir können uns aber vorstellen, dass unsere Methode einmal das Standardverfahren wird, um große Biomoleküle mit Röntgenpulsen zu untersuchen“, erklärt Tobias Schätz.

Für die Untersuchung der Struktur von biologischen Molekülen, z.B. von Proteinen, gibt es bislang keine befriedigende Methode. Das gängige Verfahren basiert auf der Streuung von Röntgenstrahlen an Kristallen und scheitert daran, dass sich die Moleküle nur schwer oder gar nicht in die kristalline Form eines Festkörpers bringen lassen. Für die Abbildung einzelner oder weniger Moleküle reichte bislang die Intensität der zur Verfügung stehenden Lichtquellen nicht aus. Denn bis die Moleküle die hierfür erforderliche Zahl von rund 1013 Photonen aufgesammelt haben, ist ausreichend Zeit vergangen, um sie infolge der dabei erhaltenen Strahlenschäden zu zerstören. Überdies machen es lange Expositionsdauern unmöglich, die hohe Zeitauflösung zu erreichen, die notwendig ist, um kurzlebige Zwischenprodukte oder schnelle Strukturveränderungen zu analysieren.

Die neue Generation von Röntgen-Femtosekunden-Lasern verspricht, diese Hürden zu überwinden. Denn sie liefert Lichtpulse, die mit einer Dauer von wenigen Femtosekunden (1 Femtosekunde ist ein Millionstel von einer Milliardstelsekunde, 10 -15 sec) kurz genug sind, um die Moleküle durch Photonenstreuung abzubilden, bevor Strahlenschäden „sichtbar“ werden können. Außerdem kann der Strahldurchmesser auf die Größe eines Moleküls, etwa ein Zehntel Mikrometer, fokussiert werden. Doch wie schafft man es, ein Molekül so genau zu positionieren, dass man den Laserpuls dann zielgenau überlagern kann?

Für die kontrollierte Speicherung einzelner elektrischer geladener Atome, d.h. Ionen, hat sich seit vielen Jahrzenten die so genannte Ionenfalle bewährt. Dabei handelt es sich im Prinzip um ein evakuiertes Gefäß, in dem vier Elektroden so schnell (mit Radiofrequenzen, d.h. ca. 107 Hertz) zwischen Plus und Minus hin und her geschaltet werden, dass sie einzelne, auf extrem tiefe Temperaturen gekühlte Ionen im Zentrum der Falle halten. „Schwebend“ und gut isoliert von ihrer Umgebung können die Teilchen mehrere Stunden überleben. Füllt man in die Falle mehrere Ionen, dann bilden sich aufgrund ihrer wechselseitigen Abstoßung geordnete Strukturen aus. Obwohl der Begriff „kristalline Struktur“ gerechtfertig ist, sind die Abstände rund 100 000 Mal größer als in Festkörperkristallen, wodurch sich einzelne Gitterplätze leicht auflösen lassen.

Auf Moleküle ist diese Methode nicht so ohne weiteres anzuwenden, da sie sich mit den entsprechenden Methoden nicht direkt abkühlen lassen. Die Garchinger Physiker haben nun ein einzelnes Molekül in einen bereits vorhandenen Ionenkristall eingebettet. In ihrem Experiment schalten sie dazu zwei Ionenfallen hintereinander. In der ersten Falle werden unter Einstrahlung von Licht aus Magnesiumdampf und Wasserstoff in einer photochemischen Reaktion Molekülionen erzeugt, die aus je einem Magnesium und einem Wasserstoffatom bestehen (MgH+, bzw. Magnesiumhydrid). Diese zweiatomigen Moleküle werden in eine zweite Ionenfalle überführt, in der sich bereits atomare Magnesiumionen in einem gegenseitigen Abstand von 10 Mikrometern zu einem Gitter angeordnet haben. Unter dem Einfluss der kalten Atome kommt auch das einzelne Molekülion nahezu zum Stillstand und ersetzt eines der atomaren Ionen im Kristallgitter. Während sich jedoch die atomaren Ionen durch Fluoreszenzlicht zu erkennen geben, bleibt der Gitterplatz mit dem Molekül dunkel. Die Position des Moleküls kann jetzt durch Interpolation aus der Position seiner beiden leuchtenden Nachbarn auf weniger als ein Mikrometer genau abgeleitet werden.

Damit sind die Voraussetzungen dafür geschaffen, das Teilchen zielgenau und mit nahezu hundertprozentiger Wahrscheinlichkeit mit Femtosekunden-Laserpulsen zu treffen. Dabei wird das Molekül, das sich zunächst im Vibrationsgrundzustand befindet, mit einem ersten Puls in einen Zustand angeregt, bei dem die beiden Atome mit einer Periode von 30 Femtosekunden gegeneinander schwingen. Ein zweiter Puls testet wenig später, in welcher Phase des Schwingungszyklus sich das Molekül gerade befindet. Am Umkehrpunkt, also nach 15 Femtosekunden, ist der Abstand zwischen den beiden Atomen am größten. Trifft der Abfrage-Puls genau zu diesem Zeitpunkt auf das Molekül, dann ist die Wahrscheinlichkeit dafür, dass die Bindung zwischen den zwei Atomen zerbricht, am größten. Infolgedessen verschwindet der dunkle Fleck im Ionenkristall (siehe Abb.).

„In unserem Experiment könnten wir die Moleküle im Takt der Laserpulse zur Verfügung stellen, d.h. rund 100 in der Sekunde“, erklärt Tobias Schätz. „Auf diese Weise kommt immer Nachschub für das bereits bestrahlte und letztendlich zerstörte Molekül. Indem wir bei den verschiedenen Molekülen die Verzögerungszeiten zwischen Anrege- und Abfrage-Puls variieren, können wir die Schwingungsdynamik des zweiatomigen Moleküls auflösen. Dies ist nur möglich, weil die Pulse mit einer Dauer von wenigen Femtosekunden wesentlich kürzer als die Schwingung des Moleküls sind.“

Bei den hier beschriebenen Experimenten wurde Laserpulse im UV-Bereich verwendet, um die Machbarkeit der Methode zu demonstrieren. Mit Röntgenpulsen ließe sie sich auch auf Biomoleküle anwenden, die in der Natur häufig in geladener Form vorkommen und die mit standardisierten Verfahren erzeugt werden können. Die hohe Intensität und die kurze Dauer der Röntgen-Laserpulse sollten es dann erlauben, nützliche Informationen über die Struktur des einzelnen Moleküls zu erhalten, bevor es aufgrund der Strahlen geschädigt ist. Das Experiment könnte der Schlüssel werden, um in Zukunft einzelne komplex aufgebaute Moleküle mit der erforderlichen Genauigkeit und Effizienz zu untersuchen. [Olivia Meyer-Streng]

Originalveröffentlichung:
Steffen Kahra, Günther Leschhorn, Markus Kowalewski, Agustin Schiffrin, Elisabeth Bothschafter, Werner Fuß, Regina de Vivie-Riedle, Ralph Ernstorfer, Ferenc Krausz, Reinhard Kienberger, Tobias Schätz
Controlled delivery of single molecules into ultra-short laser pulses: a molecular conveyor belt
Nature Physics, AOP, 5. Februar 2012, DOI 10.1038/NPHYS2214

Kontakt:
Prof. Dr. Tobias Schätz
Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Straße 1
85748 Garching
Tel.: +49 89 / 32905 -199
Fax: +49 89 / 32 905 -311
E-Mail: tobias.schaetz@mpq.mpg.de

Dr. Olivia Meyer-Streng
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Quantenoptik, Garching
Tel.: +49 89/ 32 905 -213
E-Mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut
Weitere Informationen:
http://www.mpq.mpg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Schnell wachsende Galaxien könnten kosmisches Rätsel lösen – zeigen früheste Verschmelzung
26.05.2017 | Max-Planck-Institut für Astronomie

nachricht 3D-Graphen: Experiment an BESSY II zeigt, dass optische Eigenschaften einstellbar sind
24.05.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

Staphylococcus aureus ist aufgrund häufiger Resistenzen gegenüber vielen Antibiotika ein gefürchteter Erreger (MRSA) insbesondere bei Krankenhaus-Infektionen. Forscher des Paul-Ehrlich-Instituts haben immunologische Prozesse identifiziert, die eine erfolgreiche körpereigene, gegen den Erreger gerichtete Abwehr verhindern. Die Forscher konnten zeigen, dass sich durch Übertragung von Protein oder Boten-RNA (mRNA, messenger RNA) des Erregers auf Immunzellen die Immunantwort in Richtung einer aktiven Erregerabwehr verschieben lässt. Dies könnte für die Entwicklung eines wirksamen Impfstoffs bedeutsam sein. Darüber berichtet PLOS Pathogens in seiner Online-Ausgabe vom 25.05.2017.

Staphylococcus aureus (S. aureus) ist ein Bakterium, das bei weit über der Hälfte der Erwachsenen Haut und Schleimhäute besiedelt und dabei normalerweise keine...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

DFG fördert 15 neue Sonderforschungsbereiche (SFB)

26.05.2017 | Förderungen Preise

Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

26.05.2017 | Biowissenschaften Chemie

Unglaublich formbar: Lesen lernen krempelt Gehirn selbst bei Erwachsenen tiefgreifend um

26.05.2017 | Gesellschaftswissenschaften