Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Laserphysik auf den Kopf gestellt

13.04.2010
Neuer Effekt bei Quantenpunktlasern erlaubt maßgeschneiderte, wechselnde Wellenlängen

Forscher der Technischen Universität Darmstadt haben einen neuen Weg gefunden, mittels Quantenpunktlasern maßgeschneiderte Wellenlängen zu erzeugen und darüber hinaus leichter zwischen zwei Wellenlängen hin- und herzuschalten. Mögliche Anwendungen ergeben sich in der Biomedizin und der Nanochirurgie.

Darmstädter Physiker haben einen Effekt gefunden, der die Grundlagen der Halbleiterphysik quasi "auf den Kopf" stellt: Üblicherweise beginnt die Lasertätigkeit bei Halbleiterlasern auf dem energetisch niedrigsten Zustand; erst mit wachsendem Pumpstrom setzt auch die Emission von höherenergetischen, d.h. kurzwelligen Photonen ein. Forscher der Arbeitsgruppe Halbleiteroptik des Instituts für Angewandte Physik der TU Darmstadt um Prof. Dr. Wolfgang Elsäßer haben nun die Möglichkeit entdeckt, dass Quantenpunktlaser zunächst kurzwellige Photonen emittieren.

"Diese von uns erstmals gefundene umgekehrte Zustandshierarchie erlaubt es, 'quasi auf Bestellung' maßgeschneiderte Wellenlängen in einem für viele Anwendungen interessanten Wellenlängenbereich zu erzeugen. Darüber hinaus erlaubt die Methode, nicht nur einfacher zwischen zwei Wellenlängen hin- und herzuschalten, sondern auch gezielt Effekte des Lasersystems zur Verbesserung von Pulseigenschaften auszunutzen", erläutert Elsäßer.

Diesen neuen Effekt entdeckte Dr. Stefan Breuer im Rahmen seiner Doktorarbeit innerhalb des EU-Projekts "FAST-DOT (Kompakte, ultraschnelle auf neuartigen Quantenpunktstrukturen basierte Laserquellen)". Dieses Forschungsprojekt, an dem 18 Universitäts- bzw. Forschungslaboratorien und Industriepartner beteiligt sind, zielt darauf ab, kleinere und günstigere Laser zu entwickeln, die in der Biomedizin eingesetzt werden können. Die Darmstädter haben in diesem Verbund die Aufgabe, Quantenpunkt-Halbleiterlaser experimentell zu untersuchen, sodass in Zusammenarbeit mit den anderen Forschern sowie Laserherstellern optimierte Lasereigenschaften erzielt oder sogar gänzlich neue Laserstrukturen realisiert werden. Die EU unterstützt das seit 2008 laufende Projekt bis 2012 mit 10 Millionen Euro. Im nächsten Schritt wollen die Forscher des Projekts "FAST-DOT" nun die Einsatzmöglichkeiten des leichteren Wechsels zwischen Wellenlängen prüfen, dessen Grundlage die Darmstädter gefunden haben.

Nanostrukturierte Quantenpunktlaser in der Medizin

"Die Bedingungen für den Einsatz von Lasern in der Nanochirurgie waren bislang nicht optimal", erläutert Elsäßer. "Ein Problem war die aufwändige Realisierung mit riesigen Lasern, die quadratmetergroße Lasertische erforderten und durch unzulängliche Energieeffizienz hohe Energiekosten verursachten." Anders ist dies bei der jüngsten Generation der extrem effizienten Quantenpunktlasern, die aus nanostrukturierten Halbleitermaterialien hergestellt werden. Die winzigen pyramidenförmigen Gebilde, die sogenannten Dots, haben eine Größe von Millionstel Millimetern. "Diese Winzigkeit der Strukturen hat Einfluss auf das durch sie emittierte Licht, denn Nanostrukturen von exakt definierter Größe ermöglichen die Emission von Licht genau definierter Wellenlänge. Verändert man die Größe und Umgebung der Dots, verändert sich auch die Wellenlänge und damit die Farbe des Lichts. Damit können Quantenpunktlaser hergestellt werden, die Laserlicht mit genau definierter Wellenlänge für sehr spezifische Anwendungen emittieren", erläutert Elsäßer.

In der Mikroskopie ermöglichen Quantenpunktlaser das Durchleuchten einer Zelle. Dabei werden nicht nur einzelne Zellstrukturen für das menschliche Auge sichtbar, diese Strukturen sind auch mit hoher Tiefenschärfe zu erkennen. Eine weitere Anwendung ist ein bildgebendes 3D-Verfahren, die sogenannte optische Kohärenz-Tomographie. Hiermit werden mittels höchstempfindlicher Messungen von Reflektionen Schichtbilder mit enormer Orts- und Tiefenauflösung gewonnen, was eine nichtinvasive Frühdiagnose ermöglicht. Augenärzte können so mit Hilfe eines Quantenpunktlasers die Netzhaut in ihrer gesamten Tiefe abtasten, ohne einen Eingriff vornehmen zu müssen. Auch können Hautschichten in ihrer gesamten Ausdehnung analysiert und auf Hautkrebs untersucht werden.

Bei Quantenpunktlasern mit höheren Pulsfrequenzen reicht die Energie aus, um die Zelle zu verändern, also zum Beispiel präzise Schnitte mit minimaler Beeinflussung der zellulären Umgebung durchzuführen. "Sie können als hochpräzise Skalpelle eingesetzt werden, mit denen einzelne Zellstrukturen kontrolliert durchtrennt werden können", umreißt Elsäßer. Außerdem können bestimmte Zellorganellen ausgeschaltet oder einzelne Moleküle - zelleigene oder zellfremde - aktiviert werden. Das eröffnet ungeahnte Möglichkeiten in der Molekülchirurgie, mit der Schnitte durchgeführt werden können, die zweitausend Mal feiner sind als ein Haar. Damit könnten künftig Krebszellen ohne nennenswerte Nebenwirkungen zerstört oder auch Hornhautkorrekturen am Auge durchgeführt werden.

Pressekontakt
Prof. Dr. Wolfgang Elsäßer
Institut für Angewandte Physik
Tel. 06151 / 16-6463
E-Mail: elsaesser@physik.tu-darmstadt.de

Jörg Feuck | idw
Weitere Informationen:
http://www.physik.tu-darmstadt.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Proteintransport - Stau in der Zelle
24.03.2017 | Ludwig-Maximilians-Universität München

nachricht Neuartige Halbleiter-Membran-Laser
22.03.2017 | Universität Stuttgart

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise