Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Laserlicht aus Wärme

13.11.2012
Wärme bereitet in der Mikroelektronik nicht selten Probleme. Ingenieure kühlen Mikrochips und andere Bauteile mit großem technischem Aufwand, um die im Betrieb entstehende Hitze abzuführen.

Innsbrucker Physiker stellen nun ein Konzept für einen Laser vor, der nur durch Wärme angetrieben wird. Diese Idee könnte einen völlig neuen Weg zur Kühlung von Mikrochips eröffnen.


Schematische Darstellung eines Quanten-Kaskadenlasers. Die Schichten aus unterschiedlichen Halbleitermaterialien ergeben die gezeigte Bandstruktur.

Grafik: Christoph Deutsch

Seit der Erfindung vor 50 Jahren hat das Laserlicht unseren Alltag erobert. In allen Lebensbereichen werden heute Laser unterschiedlichster Wellenlänge und Leistung eingesetzt, von der Unterhaltungselektronik über die Telekommunikation bis zur Medizin. Es sind jedoch nicht alle Wellenlängen gleich gut erschlossen.

Für den Bereich der fernen Infrarot- und der Terahertz-Strahlung stellen sogenannte Quanten-Kaskadenlaser die technisch bedeutendste Quelle dar. Die Lichtverstärkung in einem solchen Kaskadenlaser wird durch eine wiederholte Abfolge aus präzise konstruierten Halbleiterschichten unterschiedlicher Dotierung erzielt, durch die elektrischer Strom geleitet wird.

„Die Elektronen durchlaufen diese Struktur durch eine genau bestimmte Abfolge von Tunnelprozessen und Quantensprüngen und senden dabei kohärente Lichtteilchen aus“, erklärt Helmut Ritsch vom Institut für Theoretische Physik an der Universität Innsbruck das Funktionsprinzip. „Zwischen den einzelnen Schichten stoßen die Elektronen allerdings mit anderen Teilchen und erwärmen auf diese Weise den Laser.“ Quanten-Kaskadenlaser funktionieren deshalb nur, solange sie stark gekühlt werden. Erhitzt sich ein Bauteil zu stark, erlischt das Laserlicht.

Revolutionäre Idee

Auf der Suche nach Möglichkeiten, die Wärmeerzeugung in Lasern zu begrenzen, hat die Doktorandin Kathrin Sandner gemeinsam mit Helmut Ritsch nun eine revolutionäre Idee hervorgebracht: Die Theoretiker wollen Temperaturunterschiede für den Betrieb des Lasers nutzen. In einer vor kurzem in der renommierten Zeitschrift Physical Review Letters veröffentlichten Arbeit sagen die beiden theoretisch vorher, dass sich der Heizeffekt von Quanten-Kaskadenlaser durch trickreiche Veränderung der Dicke der Halbleiterschichten nicht nur vermeiden, sondern sogar umkehren lässt.

„Ein entscheidender Trick dabei ist es, warme und kalte Bereiche im Laser räumlich voneinander zu trennen“, erklärt Kathrin Sandner. „In einem sogenannten Temperaturgradienten-Laser werden die Elektronen im heißen Bereich thermisch angeregt und tunneln dann in den kühleren Bereich, wo Photonen emittiert werden.“ So entsteht ein Kreislauf, in dem Lichtteilchen ausgesandt und gleichzeitig Wärmeenergie aus dem System entzogen wird. „Zwischen den Emissionsschritten wird jeweils ein Gitterschwingungsquant absorbiert und dabei der Laser gekühlt. Entwickelt man diese Idee weiter, sieht man, dass die Präsenz thermischer Quanten, sogenannter Phononen ausreichen kann, die gesamte Energie für die Laserverstärkung bereitzustellen“, so Theoretikerin Sandner. Ein solcher Laser könnte dann ohne elektrischen Strom betrieben werden, solange der Temperaturunterschied aufrechterhalten wird.

„Es ist sicher sehr herausfordernd, diese Idee im Experiment umzusetzen“, sagt Helmut Ritsch. „Wenn es aber gelingen sollte, wäre das eine echte technische Innovation.“ Das Prinzip kann aber auch bereits auf bestehende Quanten-Kaskadenlaser angewendet werden und dort für eine interne Kühlung sorgen. Dieses eingeschränkte Konzept scheint relativ einfach umsetzbar und wird von Experimentalphysikern bereits geprüft.

Elegant und mit technischem Potential

„Neben der konzeptuellen Eleganz dieser Idee, könnte sich hier ein völlig neuer Weg eröffnen, die Abwärme in Mikrochips nutzbringend zu verwenden, anstatt sie mittels aufwändiger Kühlung abführen zu müssen“, zeigt sich Helmut Ritsch über die Arbeit seiner Doktorandin begeistert. Kathrin Sandner hat in Freiburg im Breisgau Physik studiert und forscht seit 2009 am Institut für Theoretische Physik der Universität Innsbruck. „Wenn man in Europa Quantenoptik machen will, dann ist Innsbruck die erste Adresse“, so Sandner über ihre Motivation, in Innsbruck zu arbeiten. Die Forscherin erhielt von der Österreichischen Akademie der Wissenschaften ein DOC-fFORTE-Stipendium und wird von der Universität Innsbruck mit einem Doktoratsstipendium unterstützt. Sandner schließt in Kürze ihr Doktoratsstudium in Innsbruck ab.

Publikation: Temperature Gradient Driven Lasing and Stimulated Cooling. K. Sandner, H. Ritsch. Phys. Rev. Lett. 109, 193601 (2012) DOI:10.1103/PhysRevLett.109.193601 http://dx.doi.org/10.1103/PhysRevLett.109.193601

Rückfragehinweis:

Univ.-Prof. Mag.Dr. Helmut Ritsch
Institut für Theoretische Physik
Universität Innsbruck
Telefon: +43 512 507-52213
E-Mail: helmut.ritsch@uibk.ac.at
Dipl.-Phys. Kathrin Sandner
Institut für Theoretische Physik
Universität Innsbruck
Telefon: +43 512 507-52224
E-Mail: kathrin.sandner@uibk.ac.at
Dr. Christian Flatz
Büro für Öffentlichkeitsarbeit
Universität Innsbruck
Telefon: +43 512 507-32022
Mobil: +43 676 872532022
E-Mail: christian.flatz@uibk.ac.at

Dr. Christian Flatz | Universität Innsbruck
Weitere Informationen:
http://www.uibk.ac.at

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Nanoinjektion steigert Überlebensrate von Zellen
22.02.2017 | Universität Bielefeld

nachricht Zinn in der Photodiode: nächster Schritt zur optischen On-Chip-Datenübertragung
21.02.2017 | Forschungszentrum Jülich

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mehr Sicherheit für Flugzeuge

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem totalen Triebwerksausfall zum Einsatz kommt, um den Piloten ein sicheres Gleiten zu einem Notlandeplatz zu ermöglichen, und ein Assistenzsystem für Segelflieger, das ihnen das Erreichen größerer Höhen erleichtert. Präsentiert werden sie von Prof. Dr.-Ing. Wolfram Schiffmann auf der Internationalen Fachmesse für Allgemeine Luftfahrt AERO vom 5. bis 8. April in Friedrichshafen.

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem...

Im Focus: HIGH-TOOL unterstützt Verkehrsplanung in Europa

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt sich bewerten, wie verkehrspolitische Maßnahmen langfristig auf Wirtschaft, Gesellschaft und Umwelt wirken. HIGH-TOOL ist ein frei zugängliches Modell mit Modulen für Demografie, Wirtschaft und Ressourcen, Fahrzeugbestand, Nachfrage im Personen- und Güterverkehr sowie Umwelt und Sicherheit. An dem nun erfolgreich abgeschlossenen EU-Projekt unter der Koordination des KIT waren acht Partner aus fünf Ländern beteiligt.

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt...

Im Focus: Zinn in der Photodiode: nächster Schritt zur optischen On-Chip-Datenübertragung

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium allein – die stoffliche Basis der Chip-Produktion – sind als Lichtquelle kaum geeignet. Jülicher Physiker haben nun gemeinsam mit internationalen Partnern eine Diode vorgestellt, die neben Silizium und Germanium zusätzlich Zinn enthält, um die optischen Eigenschaften zu verbessern. Das Besondere daran: Da alle Elemente der vierten Hauptgruppe angehören, sind sie mit der bestehenden Silizium-Technologie voll kompatibel.

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium...

Im Focus: Innovative Antikörper für die Tumortherapie

Immuntherapie mit Antikörpern stellt heute für viele Krebspatienten einen Erfolg versprechenden Ansatz dar. Weil aber längst nicht alle Patienten nachhaltig von diesen teuren Medikamenten profitieren, wird intensiv an deren Verbesserung gearbeitet. Forschern um Prof. Thomas Valerius an der Christian Albrechts Universität Kiel gelang es nun, innovative Antikörper mit verbesserter Wirkung zu entwickeln.

Immuntherapie mit Antikörpern stellt heute für viele Krebspatienten einen Erfolg versprechenden Ansatz dar. Weil aber längst nicht alle Patienten nachhaltig...

Im Focus: Durchbruch mit einer Kette aus Goldatomen

Einem internationalen Physikerteam mit Konstanzer Beteiligung gelang im Bereich der Nanophysik ein entscheidender Durchbruch zum besseren Verständnis des Wärmetransportes

Einem internationalen Physikerteam mit Konstanzer Beteiligung gelang im Bereich der Nanophysik ein entscheidender Durchbruch zum besseren Verständnis des...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

6. Internationale Fachkonferenz „InnoTesting“ am 23. und 24. Februar 2017 in Wildau

22.02.2017 | Veranstaltungen

Wunderwelt der Mikroben

22.02.2017 | Veranstaltungen

Der Lkw der Zukunft kommt ohne Fahrer aus

21.02.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Ursache für eine erbliche Muskelerkrankung entdeckt

22.02.2017 | Medizin Gesundheit

Möglicher Zell-Therapieansatz gegen Zytomegalie

22.02.2017 | Biowissenschaften Chemie

Meeresforschung in Echtzeit verfolgen

22.02.2017 | Geowissenschaften