Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Laserlicht aus Wärme

13.11.2012
Wärme bereitet in der Mikroelektronik nicht selten Probleme. Ingenieure kühlen Mikrochips und andere Bauteile mit großem technischem Aufwand, um die im Betrieb entstehende Hitze abzuführen.

Innsbrucker Physiker stellen nun ein Konzept für einen Laser vor, der nur durch Wärme angetrieben wird. Diese Idee könnte einen völlig neuen Weg zur Kühlung von Mikrochips eröffnen.


Schematische Darstellung eines Quanten-Kaskadenlasers. Die Schichten aus unterschiedlichen Halbleitermaterialien ergeben die gezeigte Bandstruktur.

Grafik: Christoph Deutsch

Seit der Erfindung vor 50 Jahren hat das Laserlicht unseren Alltag erobert. In allen Lebensbereichen werden heute Laser unterschiedlichster Wellenlänge und Leistung eingesetzt, von der Unterhaltungselektronik über die Telekommunikation bis zur Medizin. Es sind jedoch nicht alle Wellenlängen gleich gut erschlossen.

Für den Bereich der fernen Infrarot- und der Terahertz-Strahlung stellen sogenannte Quanten-Kaskadenlaser die technisch bedeutendste Quelle dar. Die Lichtverstärkung in einem solchen Kaskadenlaser wird durch eine wiederholte Abfolge aus präzise konstruierten Halbleiterschichten unterschiedlicher Dotierung erzielt, durch die elektrischer Strom geleitet wird.

„Die Elektronen durchlaufen diese Struktur durch eine genau bestimmte Abfolge von Tunnelprozessen und Quantensprüngen und senden dabei kohärente Lichtteilchen aus“, erklärt Helmut Ritsch vom Institut für Theoretische Physik an der Universität Innsbruck das Funktionsprinzip. „Zwischen den einzelnen Schichten stoßen die Elektronen allerdings mit anderen Teilchen und erwärmen auf diese Weise den Laser.“ Quanten-Kaskadenlaser funktionieren deshalb nur, solange sie stark gekühlt werden. Erhitzt sich ein Bauteil zu stark, erlischt das Laserlicht.

Revolutionäre Idee

Auf der Suche nach Möglichkeiten, die Wärmeerzeugung in Lasern zu begrenzen, hat die Doktorandin Kathrin Sandner gemeinsam mit Helmut Ritsch nun eine revolutionäre Idee hervorgebracht: Die Theoretiker wollen Temperaturunterschiede für den Betrieb des Lasers nutzen. In einer vor kurzem in der renommierten Zeitschrift Physical Review Letters veröffentlichten Arbeit sagen die beiden theoretisch vorher, dass sich der Heizeffekt von Quanten-Kaskadenlaser durch trickreiche Veränderung der Dicke der Halbleiterschichten nicht nur vermeiden, sondern sogar umkehren lässt.

„Ein entscheidender Trick dabei ist es, warme und kalte Bereiche im Laser räumlich voneinander zu trennen“, erklärt Kathrin Sandner. „In einem sogenannten Temperaturgradienten-Laser werden die Elektronen im heißen Bereich thermisch angeregt und tunneln dann in den kühleren Bereich, wo Photonen emittiert werden.“ So entsteht ein Kreislauf, in dem Lichtteilchen ausgesandt und gleichzeitig Wärmeenergie aus dem System entzogen wird. „Zwischen den Emissionsschritten wird jeweils ein Gitterschwingungsquant absorbiert und dabei der Laser gekühlt. Entwickelt man diese Idee weiter, sieht man, dass die Präsenz thermischer Quanten, sogenannter Phononen ausreichen kann, die gesamte Energie für die Laserverstärkung bereitzustellen“, so Theoretikerin Sandner. Ein solcher Laser könnte dann ohne elektrischen Strom betrieben werden, solange der Temperaturunterschied aufrechterhalten wird.

„Es ist sicher sehr herausfordernd, diese Idee im Experiment umzusetzen“, sagt Helmut Ritsch. „Wenn es aber gelingen sollte, wäre das eine echte technische Innovation.“ Das Prinzip kann aber auch bereits auf bestehende Quanten-Kaskadenlaser angewendet werden und dort für eine interne Kühlung sorgen. Dieses eingeschränkte Konzept scheint relativ einfach umsetzbar und wird von Experimentalphysikern bereits geprüft.

Elegant und mit technischem Potential

„Neben der konzeptuellen Eleganz dieser Idee, könnte sich hier ein völlig neuer Weg eröffnen, die Abwärme in Mikrochips nutzbringend zu verwenden, anstatt sie mittels aufwändiger Kühlung abführen zu müssen“, zeigt sich Helmut Ritsch über die Arbeit seiner Doktorandin begeistert. Kathrin Sandner hat in Freiburg im Breisgau Physik studiert und forscht seit 2009 am Institut für Theoretische Physik der Universität Innsbruck. „Wenn man in Europa Quantenoptik machen will, dann ist Innsbruck die erste Adresse“, so Sandner über ihre Motivation, in Innsbruck zu arbeiten. Die Forscherin erhielt von der Österreichischen Akademie der Wissenschaften ein DOC-fFORTE-Stipendium und wird von der Universität Innsbruck mit einem Doktoratsstipendium unterstützt. Sandner schließt in Kürze ihr Doktoratsstudium in Innsbruck ab.

Publikation: Temperature Gradient Driven Lasing and Stimulated Cooling. K. Sandner, H. Ritsch. Phys. Rev. Lett. 109, 193601 (2012) DOI:10.1103/PhysRevLett.109.193601 http://dx.doi.org/10.1103/PhysRevLett.109.193601

Rückfragehinweis:

Univ.-Prof. Mag.Dr. Helmut Ritsch
Institut für Theoretische Physik
Universität Innsbruck
Telefon: +43 512 507-52213
E-Mail: helmut.ritsch@uibk.ac.at
Dipl.-Phys. Kathrin Sandner
Institut für Theoretische Physik
Universität Innsbruck
Telefon: +43 512 507-52224
E-Mail: kathrin.sandner@uibk.ac.at
Dr. Christian Flatz
Büro für Öffentlichkeitsarbeit
Universität Innsbruck
Telefon: +43 512 507-32022
Mobil: +43 676 872532022
E-Mail: christian.flatz@uibk.ac.at

Dr. Christian Flatz | Universität Innsbruck
Weitere Informationen:
http://www.uibk.ac.at

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Weniger (Flug-)Lärm dank Mathematik
21.09.2017 | Forschungszentrum MATHEON ECMath

nachricht Der stotternde Motor im Weltall
21.09.2017 | Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

23. Baltic Sea Forum am 11. und 12. Oktober nimmt Wirtschaftspartner Finnland in den Fokus

21.09.2017 | Veranstaltungen

6. Stralsunder IT-Sicherheitskonferenz im Zeichen von Smart Home

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

OLED auf hauchdünnem Edelstahl

21.09.2017 | Messenachrichten

Weniger (Flug-)Lärm dank Mathematik

21.09.2017 | Physik Astronomie

In Zeiten des Klimawandels: Was die Farbe eines Sees über seinen Zustand verrät

21.09.2017 | Geowissenschaften