Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Laserkamera für Bilder um die Ecke

18.11.2010
Aufnahmetechnik der Zukunft mimt die Funktionsweise des Echolots

Bilder von Objekten, die nicht im direkten Blickfeld liegen, kann man auch ohne Röntgenstrahlen oder Periskop machen. Das behaupten Forscher des Media Lab am Massachusetts Institute of Technology. Im Experiment testeten sie das Prinzip einer Kamera, die über einen Femtosekunden-Laser ultrakurze Lichtimpulse ausstößt.


Um die Ecke sehen: Wie eine solche Kamera in der Theorie funktioniert, weiß man bereits (Bild: MIT)

Diese prallen von den Objekten, auf die sie treffen, mehrmals ab und gelangen zu einem geringen Teil wieder zurück in eine Fotodiode der Kamera. Diese versucht mit komplexen Computeralgorithmen, Objekte auch um die Ecke Pixel für Pixel zu rekonstruieren.

Versteckte Personen finden

"Die Idee ähnelt der Funktionsweise eines Echolots, das etwa Wale oder Fledermäuse verwenden", kommentiert Andreas Voß, Leiter des Geschäftsbereiches Laserentwicklung und Laseroptik am Institut für Strahlwerkzeuge der Universität Stuttgart, gegenüber pressetext. Als wesentliches Schlüsselelement für eine leistungsfähige Realisierung der Idee sei eine Kameratechnik nötig, die etwa durch eine Kerr-Zelle bestimmte Zeitfenster aufnehmen und die Zeitverzögerung analysieren kann.

Ahmed Kirmani, einer der beteiligten Forscher, erklärt das Prinzip am Beispiel einer Kamera, die man auf die offene Türe eines Raumes mit einer versteckten Person richtet. Über ihren Blitz schickt sie extrem kurze, genau gerichtete Lichtpulse aus, die von der Türe abprallen und von dort aus in alle Richtungen verstreut werden. Teils gelangen die Photonen direkt zur Kamera zurück, teils dringen sie auch in den Raum ein und erfassen unter anderem die Person. Ein Bruchteil dieser Teilchen erreicht wieder die Tür, die der Kamera ja bereits bekannt ist, wiederum nur ein Teil davon gelangt zurück in die Linse und wird von einem Computer analysiert.

Große Hürden, doch nicht unmöglich

"Theoretisch ist das Prinzip hochinteressant, praktisch sind jedoch noch einige große Probleme zu lösen", erklärt Voß. Für eine Umsetzung unter realistischen Bedingungen wird ein leistungsfähiger Ultrakurzpuls-Laser benötigt, was für mobile Geräte zurzeit ein Problem darstellt. Zudem braucht man eine extrem leistungsstarke, zeitauflösende Kamera, die es so im Moment noch nicht gibt. Die größte Hürde sieht der Laserspezialist jedoch in der Auswertung der rückkehrenden Signale: "Die erforderliche Rechenleistung, um aus der entstehenden Datenflut detaillierte Bilder zu rekonstruieren, ist enorm."

Überschätzen sollte man die Technik, die auf jeden Fall noch viele Entwicklungsjahre benötigt, nicht, betont der Stuttgarter Laserexperte. "Zumindest in den nächsten Jahrzehnten wird man damit nicht in jedes Privathaus hineinsehen können. Dass man mit einem derartigen Gerät eines Tages erkennen kann, ob sich eine Person in einem Raum befindet oder nicht, scheint jedoch zumindest denkbar – und wäre, etwa aus militärischer Sicht, sicher interessant." Die MIT-Forscher sehen die Anwendungen daneben auch im Bereich des maschinellen Sehens oder in der Suche nach Überlebenden bei Gebäudeeinstürzen.

Details unter http://cameraculture.media.mit.edu/femtotransientimaging sowie http://dspace.mit.edu/bitstream/handle/1721.1/58402/656284100.pdf?sequence=1

Johannes Pernsteiner | pressetext.redaktion
Weitere Informationen:
http://web.mit.edu
http://www.ifsw.uni-stuttgart.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Vorstoß ins Innere der Atome
23.02.2018 | Max-Planck-Institut für Quantenoptik

nachricht Quanten-Wiederkehr: Alles wird wieder wie früher
23.02.2018 | Technische Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics