Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Laserkamera für Bilder um die Ecke

18.11.2010
Aufnahmetechnik der Zukunft mimt die Funktionsweise des Echolots

Bilder von Objekten, die nicht im direkten Blickfeld liegen, kann man auch ohne Röntgenstrahlen oder Periskop machen. Das behaupten Forscher des Media Lab am Massachusetts Institute of Technology. Im Experiment testeten sie das Prinzip einer Kamera, die über einen Femtosekunden-Laser ultrakurze Lichtimpulse ausstößt.


Um die Ecke sehen: Wie eine solche Kamera in der Theorie funktioniert, weiß man bereits (Bild: MIT)

Diese prallen von den Objekten, auf die sie treffen, mehrmals ab und gelangen zu einem geringen Teil wieder zurück in eine Fotodiode der Kamera. Diese versucht mit komplexen Computeralgorithmen, Objekte auch um die Ecke Pixel für Pixel zu rekonstruieren.

Versteckte Personen finden

"Die Idee ähnelt der Funktionsweise eines Echolots, das etwa Wale oder Fledermäuse verwenden", kommentiert Andreas Voß, Leiter des Geschäftsbereiches Laserentwicklung und Laseroptik am Institut für Strahlwerkzeuge der Universität Stuttgart, gegenüber pressetext. Als wesentliches Schlüsselelement für eine leistungsfähige Realisierung der Idee sei eine Kameratechnik nötig, die etwa durch eine Kerr-Zelle bestimmte Zeitfenster aufnehmen und die Zeitverzögerung analysieren kann.

Ahmed Kirmani, einer der beteiligten Forscher, erklärt das Prinzip am Beispiel einer Kamera, die man auf die offene Türe eines Raumes mit einer versteckten Person richtet. Über ihren Blitz schickt sie extrem kurze, genau gerichtete Lichtpulse aus, die von der Türe abprallen und von dort aus in alle Richtungen verstreut werden. Teils gelangen die Photonen direkt zur Kamera zurück, teils dringen sie auch in den Raum ein und erfassen unter anderem die Person. Ein Bruchteil dieser Teilchen erreicht wieder die Tür, die der Kamera ja bereits bekannt ist, wiederum nur ein Teil davon gelangt zurück in die Linse und wird von einem Computer analysiert.

Große Hürden, doch nicht unmöglich

"Theoretisch ist das Prinzip hochinteressant, praktisch sind jedoch noch einige große Probleme zu lösen", erklärt Voß. Für eine Umsetzung unter realistischen Bedingungen wird ein leistungsfähiger Ultrakurzpuls-Laser benötigt, was für mobile Geräte zurzeit ein Problem darstellt. Zudem braucht man eine extrem leistungsstarke, zeitauflösende Kamera, die es so im Moment noch nicht gibt. Die größte Hürde sieht der Laserspezialist jedoch in der Auswertung der rückkehrenden Signale: "Die erforderliche Rechenleistung, um aus der entstehenden Datenflut detaillierte Bilder zu rekonstruieren, ist enorm."

Überschätzen sollte man die Technik, die auf jeden Fall noch viele Entwicklungsjahre benötigt, nicht, betont der Stuttgarter Laserexperte. "Zumindest in den nächsten Jahrzehnten wird man damit nicht in jedes Privathaus hineinsehen können. Dass man mit einem derartigen Gerät eines Tages erkennen kann, ob sich eine Person in einem Raum befindet oder nicht, scheint jedoch zumindest denkbar – und wäre, etwa aus militärischer Sicht, sicher interessant." Die MIT-Forscher sehen die Anwendungen daneben auch im Bereich des maschinellen Sehens oder in der Suche nach Überlebenden bei Gebäudeeinstürzen.

Details unter http://cameraculture.media.mit.edu/femtotransientimaging sowie http://dspace.mit.edu/bitstream/handle/1721.1/58402/656284100.pdf?sequence=1

Johannes Pernsteiner | pressetext.redaktion
Weitere Informationen:
http://web.mit.edu
http://www.ifsw.uni-stuttgart.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Ruckartige Bewegung schärft Röntgenpulse
28.07.2017 | Max-Planck-Institut für Kernphysik

nachricht Drei Generationen an Sternen unter einem Dach
27.07.2017 | ESO Science Outreach Network - Haus der Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ruckartige Bewegung schärft Röntgenpulse

Spektral breite Röntgenpulse lassen sich rein mechanisch „zuspitzen“. Das klingt überraschend, aber ein Team aus theoretischen und Experimentalphysikern hat dafür eine Methode entwickelt und realisiert. Sie verwendet präzise mit den Pulsen synchronisierte schnelle Bewegungen einer mit dem Röntgenlicht wechselwirkenden Probe. Dadurch gelingt es, Photonen innerhalb des Röntgenpulses so zu verschieben, dass sich diese im gewünschten Bereich konzentrieren.

Wie macht man aus einem flachen Hügel einen steilen und hohen Berg? Man gräbt an den Seiten Material ab und schüttet es oben auf. So etwa kann man sich die...

Im Focus: Abrupt motion sharpens x-ray pulses

Spectrally narrow x-ray pulses may be “sharpened” by purely mechanical means. This sounds surprisingly, but a team of theoretical and experimental physicists developed and realized such a method. It is based on fast motions, precisely synchronized with the pulses, of a target interacting with the x-ray light. Thereby, photons are redistributed within the x-ray pulse to the desired spectral region.

A team of theoretical physicists from the MPI for Nuclear Physics (MPIK) in Heidelberg has developed a novel method to intensify the spectrally broad x-ray...

Im Focus: Physiker designen ultrascharfe Pulse

Quantenphysiker um Oriol Romero-Isart haben einen einfachen Aufbau entworfen, mit dem theoretisch beliebig stark fokussierte elektromagnetische Felder erzeugt werden können. Anwendung finden könnte das neue Verfahren zum Beispiel in der Mikroskopie oder für besonders empfindliche Sensoren.

Mikrowellen, Wärmestrahlung, Licht und Röntgenstrahlung sind Beispiele für elektromagnetische Wellen. Für viele Anwendungen ist es notwendig, diese Strahlung...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Navigationssystem der Hirnzellen entschlüsselt

Das menschliche Gehirn besteht aus etwa hundert Milliarden Nervenzellen. Informationen zwischen ihnen werden über ein komplexes Netzwerk aus Nervenfasern übermittelt. Verdrahtet werden die meisten dieser Verbindungen vor der Geburt nach einem genetischen Bauplan, also ohne dass äußere Einflüsse eine Rolle spielen. Mehr darüber, wie das Navigationssystem funktioniert, das die Axone beim Wachstum leitet, haben jetzt Forscher des Karlsruher Instituts für Technologie (KIT) herausgefunden. Das berichten sie im Fachmagazin eLife.

Die Gesamtlänge des Nervenfasernetzes im Gehirn beträgt etwa 500.000 Kilometer, mehr als die Entfernung zwischen Erde und Mond. Damit es beim Verdrahten der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Assistenzsysteme für die Blechumformung

28.07.2017 | Maschinenbau

Ruckartige Bewegung schärft Röntgenpulse

28.07.2017 | Physik Astronomie

Satellitendaten für die Landwirtschaft

28.07.2017 | Informationstechnologie