Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Laser Polishing Accelerates Surface Finish of Dental and Blood-carrying Implants

10.01.2013
On 28 November 2012, the partners of the project “MediSurf”, funded by the German Federal Ministry of Economics and Technology, presented their research results in Aachen, Germany.

Led by the Fraunhofer Institute for Laser Technology ILT, a consort of seven project partners addressed the task of reducing the time needed to process dental and blood-carrying implants while maintaining their high bio- and haemocompatibility. To accomplish this, a flexible and cost-effective plant, among others, was developed to automatically polish implants.


Untreated and laser-polished component of the ventricular assist system INCOR made out of titanium.
Fraunhofer ILT, Aachen/Germany

The surface quality of an implant plays a significant role if it is to be deployed in the body successfully. For example, bone implants require a porous structure so that cells can grow into them well. Other implants, however, need as smooth a surface as possible to keep bacteria from finding a hold on them and the surrounding tissue from being damaged. The project “MediSurf” has made these kinds of implants the object of its research, which has recently come to an end.

A main focus was to optimize the surface of the titanium ventricular assist system INCOR, made by the company Berlin Heart. The project aimed at reducing production time and, at the same time, guaranteeing high haemocompatibility. This means the implant should leave blood corpuscles undamaged and corpuscles should be prevented from settling on it to the largest extent possible. Blot clots are prevented from forming, thus significantly reducing the risk of heart attacks and strokes.

Initially, the question had to be resolved if laser-based polishing of the surface can reach the same haemocompatibility as obtained with conventionally used manual polishing. To answer this, researchers at the Fraunhofer ILT developed a process to polish blood-carrying implants with lasers. “We are able to reduce the micro-roughness to such an extent that the implant exhibits the best possible haemocompatibility. However, we began with very little information on exactly what quality the surface had to have for this purpose,” explains project leader Christian Nüsser from the Fraunhofer ILT. “For this reason, we had to test various parameters to reach the desired result.”

Laser polishing: quicker, cleaner and more environmentally friendly

The implants were tested as to their haemocompatibility by the University Hospital Münster (UKM). The result: laser-polished implants exhibit the same haemocompatibility as those polished manually, but laser polishing is 30 to 40 times faster than manual polishing. With large lot sizes, this means an enormous reduction in production costs. In addition, laser polishing exhibits a higher reproducibility. It guarantees a homogeneous smoothness over the entire surface of a free-form geometrical component, even on corners and edges, which are difficult to reach when polished manually. Unlike in conventional processes, the edges are not rounded off when polished with lasers, thus guaranteeing a high geometrical accuracy of the component. Another advantage of laser polishing lies in its far cleaner and more environmentally friendly process. In contrast to manual polishing, no polishing or abrasive materials are used, leaving no chemical residues remaining on the implant itself.

Inexpensive and flexible mechanical engineering for series production

Alongside this polishing process, a prototype plant has been developed at the Fraunhofer ILT for automated laser polishing of implants. For the first time, the scientists have developed a glove box with a six-axis articulated robot, which can grasp the implants and process a complete series of them on its own. This automated machine engineering makes the entire process less expensive, more flexible and appropriate for industrial series production.

Project partners

BEGO Implant Systems GmbH & Co. KG
Berlin Heart GmbH
Clean-Lasersysteme GmbH
DENTSPLY Implants Manufacturing GmbH
Fraunhofer Institute for Laser Technology ILT
Musterbau Galetzka
University Hospital Münster:
Department of Anesthesiology, Operative Medicine and Palliative Care
Contacts
Dipl.-Ing. Christian Nüsser
Polishing Group
Phone +49 241 8906-669
christian.nuesser@ilt.fraunhofer.de
Fraunhofer Institute for Laser Technology ILT
Steinbachstraße 15
52074 Aachen, Germany
Dr.-Ing. Edgar Willenborg
Head of the Polishing Group
Phone +49 241 8906-213
edgar.willenborg@ilt.fraunhofer.de
Fraunhofer Institute for Laser Technology ILT
Steinbachstraße 15
52074 Aachen, Germany

Axel Bauer | Fraunhofer-Institut
Further information:
http://www.ilt.fraunhofer.de

More articles from Physics and Astronomy:

nachricht New manifestation of magnetic monopoles discovered
08.12.2017 | Institute of Science and Technology Austria

nachricht NASA's SuperTIGER balloon flies again to study heavy cosmic particles
07.12.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Stabile Quantenbits

Physiker aus Konstanz, Princeton und Maryland schaffen ein stabiles Quantengatter als Grundelement für den Quantencomputer

Meilenstein auf dem Weg zum Quantencomputer: Wissenschaftler der Universität Konstanz, der Princeton University sowie der University of Maryland entwickeln ein...

Im Focus: Realer Versuch statt virtuellem Experiment: Erfolgreiche Prüfung von Nanodrähten

Mit neuartigen Experimenten enträtseln Forscher des Helmholtz-Zentrums Geesthacht und der Technischen Universität Hamburg, warum winzige Metallstrukturen extrem fest sind

Ultraleichte und zugleich extrem feste Werkstoffe – poröse Nanomaterialien aus Metall versprechen hochinteressante Anwendungen unter anderem für künftige...

Im Focus: Geburtshelfer und Wegweiser für Photonen

Gezielt Photonen erzeugen und ihren Weg kontrollieren: Das sollte mit einem neuen Design gelingen, das Würzburger Physiker für optische Antennen erarbeitet haben.

Atome und Moleküle können dazu gebracht werden, Lichtteilchen (Photonen) auszusenden. Dieser Vorgang verläuft aber ohne äußeren Eingriff ineffizient und...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

Hohe Heilungschancen bei Lymphomen im Kindesalter

07.12.2017 | Veranstaltungen

Der Roboter im Pflegeheim – bald Wirklichkeit?

05.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Papstar entscheidet sich für tisoware

08.12.2017 | Unternehmensmeldung

Natürliches Radongas – zweithäufigste Ursache für Lungenkrebs

08.12.2017 | Unternehmensmeldung

„Spionieren“ der versteckten Geometrie komplexer Netzwerke mit Hilfe von Maschinenintelligenz

08.12.2017 | Biowissenschaften Chemie