Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 


Laser Polishing Accelerates Surface Finish of Dental and Blood-carrying Implants

On 28 November 2012, the partners of the project “MediSurf”, funded by the German Federal Ministry of Economics and Technology, presented their research results in Aachen, Germany.

Led by the Fraunhofer Institute for Laser Technology ILT, a consort of seven project partners addressed the task of reducing the time needed to process dental and blood-carrying implants while maintaining their high bio- and haemocompatibility. To accomplish this, a flexible and cost-effective plant, among others, was developed to automatically polish implants.

Untreated and laser-polished component of the ventricular assist system INCOR made out of titanium.
Fraunhofer ILT, Aachen/Germany

The surface quality of an implant plays a significant role if it is to be deployed in the body successfully. For example, bone implants require a porous structure so that cells can grow into them well. Other implants, however, need as smooth a surface as possible to keep bacteria from finding a hold on them and the surrounding tissue from being damaged. The project “MediSurf” has made these kinds of implants the object of its research, which has recently come to an end.

A main focus was to optimize the surface of the titanium ventricular assist system INCOR, made by the company Berlin Heart. The project aimed at reducing production time and, at the same time, guaranteeing high haemocompatibility. This means the implant should leave blood corpuscles undamaged and corpuscles should be prevented from settling on it to the largest extent possible. Blot clots are prevented from forming, thus significantly reducing the risk of heart attacks and strokes.

Initially, the question had to be resolved if laser-based polishing of the surface can reach the same haemocompatibility as obtained with conventionally used manual polishing. To answer this, researchers at the Fraunhofer ILT developed a process to polish blood-carrying implants with lasers. “We are able to reduce the micro-roughness to such an extent that the implant exhibits the best possible haemocompatibility. However, we began with very little information on exactly what quality the surface had to have for this purpose,” explains project leader Christian Nüsser from the Fraunhofer ILT. “For this reason, we had to test various parameters to reach the desired result.”

Laser polishing: quicker, cleaner and more environmentally friendly

The implants were tested as to their haemocompatibility by the University Hospital Münster (UKM). The result: laser-polished implants exhibit the same haemocompatibility as those polished manually, but laser polishing is 30 to 40 times faster than manual polishing. With large lot sizes, this means an enormous reduction in production costs. In addition, laser polishing exhibits a higher reproducibility. It guarantees a homogeneous smoothness over the entire surface of a free-form geometrical component, even on corners and edges, which are difficult to reach when polished manually. Unlike in conventional processes, the edges are not rounded off when polished with lasers, thus guaranteeing a high geometrical accuracy of the component. Another advantage of laser polishing lies in its far cleaner and more environmentally friendly process. In contrast to manual polishing, no polishing or abrasive materials are used, leaving no chemical residues remaining on the implant itself.

Inexpensive and flexible mechanical engineering for series production

Alongside this polishing process, a prototype plant has been developed at the Fraunhofer ILT for automated laser polishing of implants. For the first time, the scientists have developed a glove box with a six-axis articulated robot, which can grasp the implants and process a complete series of them on its own. This automated machine engineering makes the entire process less expensive, more flexible and appropriate for industrial series production.

Project partners

BEGO Implant Systems GmbH & Co. KG
Berlin Heart GmbH
Clean-Lasersysteme GmbH
DENTSPLY Implants Manufacturing GmbH
Fraunhofer Institute for Laser Technology ILT
Musterbau Galetzka
University Hospital Münster:
Department of Anesthesiology, Operative Medicine and Palliative Care
Dipl.-Ing. Christian Nüsser
Polishing Group
Phone +49 241 8906-669
Fraunhofer Institute for Laser Technology ILT
Steinbachstraße 15
52074 Aachen, Germany
Dr.-Ing. Edgar Willenborg
Head of the Polishing Group
Phone +49 241 8906-213
Fraunhofer Institute for Laser Technology ILT
Steinbachstraße 15
52074 Aachen, Germany

Axel Bauer | Fraunhofer-Institut
Further information:

More articles from Physics and Astronomy:

nachricht New method will enable most accurate neutron measurement yet
02.10.2015 | Paul Scherrer Institut (PSI)

nachricht An easier way to operate and program multitasking machines
30.09.2015 | Siemens AG

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neue Sinumerik-Funktionen steigern Produktivität und Genauigkeit

EMO 2015, Halle 3, Stand E06/F03

  • Antriebsoptimierung aus Teileprogramm ermöglicht höhere Produktivität
  • Automatische Umschaltung der Dynamikwerte für Eilgang und Bearbeitung steigert Qualität...

Im Focus: New Sinumerik features improve productivity and precision

EMO 2015, Hall 3, Booth E06/F03

  • Drive optimization called automatically by the part program boosts productivity
  • Automatically switching the dynamic values to rapid traverse and interpolation...

Im Focus: LZH zeigt additive Fertigung auf der LABVOLUTION

Das Laser Zentrum Hannover e.V. (LZH) zeigt vom 6. bis zum 8. Oktober 2015 auf der LABVOLUTION in Hannover in Halle 9, Stand E67/09 wie laserbasierte Technologien zum Labor der Zukunft beitragen können. Als Teil des Musterlabors smartLAB präsentiert das LZH, wie die additive Fertigung, besser bekannt als 3D-Druck, Versuchsaufbauten flexibler gestalten kann.

Zwölf Partner aus Wissenschaft und Industrie stellen auf der Sonderausstellung smartLAB ein intelligentes und innovatives Musterlabor vor. Teil dieses...

Im Focus: LZH presents additive manufacturing at the LABVOLUTION

The Laser Zentrum Hannover e.V. (LZH) will present how laser-based technologies can contribute to the laboratory of the future at the LABVOLUTION in Hannover in Hall 9, Stand E67/09, from October 6th to 8th, 2015. As a part of the model lab smartLAB, the LZH is showing how additive manufacturing, better known as 3-D printing, can make experimental setups more flexible.

Twelve partners from science and industry are presenting an intelligent and innovative model lab at the special display smartLAB. A part of this intelligent...

Im Focus: New polymer creates safer fuels

Before embarking on a transcontinental journey, jet airplanes fill up with tens of thousands of gallons of fuel. In the event of a crash, such large quantities of fuel increase the severity of an explosion upon impact.

Researchers at Caltech and JPL have discovered a polymeric fuel additive that can reduce the intensity of postimpact explosions that occur during accidents and...

Alle Focus-News des Innovations-reports >>>



im innovations-report
in Kooperation mit academics

Batterietagung im April 2016 in Münster

02.10.2015 | Veranstaltungen

EEHE 2016 – Call for Papers endet am 28.10.2015!

02.10.2015 | Veranstaltungen

HDT-Tagung: 16. Essener Brandschutztage

01.10.2015 | Veranstaltungen

Weitere VideoLinks >>>
Aktuelle Beiträge

Neue Sinumerik-Funktionen steigern Produktivität und Genauigkeit

02.10.2015 | Messenachrichten

Exklusives Design für die Raumbedienung mit den neuen KNX-Tastsensoren

02.10.2015 | Architektur Bauwesen

Schutz aus Glas gegen vielerlei Gefahren: Feuer, Beschuss, Vandalismus und UV-Strahlen

02.10.2015 | Materialwissenschaften