Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Laser-Lichtfasern am Himmel für die Untersuchung der Atmosphäre

18.02.2015

Eine Kooperation der TU Wien mit Forschungsteams aus Moskau hat nun einen Laser im mittleren Infrarotbereich hervorgebracht, der stark genug ist, Plasma-Filamente in der Luft zu erzeugen. Damit könnte man die Atmosphäre chemisch untersuchen.

Es sieht ein bisschen aus wie ein Lichtschwert aus einem Star-Wars-Film: Wenn ein extrem intensiver Laserpuls durch die Luft geschickt wird, dann kann er sich selbst fokussieren und eine dünne Lichtfaser erzeugen. Wenn man solche Licht-Filamente in den Himmel schickt und das zurückgestreute Licht analysiert, kann man Schadstoffe in der Luft untersuchen.


Laser Filamente in der Luft

TU Wien


Photonik-Team an der TU Wien: Skirmantas Alisauskas, Giedrius Andriukaitis, Tobias Floery, Andrius B ...

TU Wien

Dafür braucht man allerdings Laser im mittleren Infrarotbereich. Mit solchen Lasern ist es sehr schwierig, die kritische Intensität zur Herstellung einer Lichtfaser zu erreichen, daher gelang das bisher nur in Hochdruck-Gasröhren. Nun ist es allerdings einem österreichisch-russischen Team gelungen, einen Mid-Infrarot-Laser herzustellen, der so stark ist, dass er ein Laser-Filament in der Luft unter gewöhnlichen atmosphärischen Bedingungen erzeugt.

Die Luft selbst wird zur Linse

Normalerweise divergiert ein Lichtstrahl wenn er sich ausbreitet. Um den Strahl zu fokussieren braucht man irgendeine Art von Linse. „Ein intensiver Laserpuls kann eine solche Linse ganz von selbst erzeugen – und zwar direkt in der Luft“, sagt Audrius Pugzlys (Institut für Photonik, TU Wien). Der Brechungsindex der Luft hängt von der Intensität des Strahls ab. Diese Intensität ist nicht überall gleich, in der Mitte des Strahls ist sie höher. Dadurch kann die Luft zur fokussierenden Linse werden.

„Die Linse wird vom Laserstrahl erzeugt und wirkt dann ihrerseits wieder auf den Laserstrahl, indem sie ihn fokussiert und ein heißes Plasma hervorbringt. Dieses Plasma wiederum defokussiert den Strahl dann“, sagt Skirmantas Alisauskas (TU Wien). Das Wechselspiel aus fokussierenden und defokussierenden Effekten erzeugt eine dünne leuchtende Faser, die dutzende Zentimeter oder sogar einige Meter lang sein kann. Indem man die räumliche Verteilung und den zeitlichen Ablauf des Pulses genau steuert, kann man die Position am Himmel kontrollieren, an der das leuchtende Filament erzeugt werden soll.

Das mittlere Infrarot: der interessanteste Wellenlängenbereich

„Wenn eine solche Lichtfaser entsteht, generiert sie ein breites Spektrum an Strahlung im mittleren Infrarotbereich, die uns dann Auskunft über die chemische Zusammensetzung der Luft geben kann“, sagt Audrius Pugzlys. Viele Moleküle absorbieren Licht im mittleren Infrarotbereich auf ganz charakteristische Weise, sodass man sie eindeutig identifizieren kann. Man braucht daher starke Laserstrahlen in diesem Wellenlängenbereich, um mit Licht-Filamenten in der Atmosphäre chemische Analysen zu ermöglichen. Lange Zeit waren ausreichend hochenergetische Infrarot-Laserpulse nicht verfügbar.

Ein Team der TU Wien arbeitet seit Jahren daran, extrem energiereiche Laserpulse im Infrarot-Bereich herzustellen. „Schon seit einiger Zeit können wir Licht-Filamente in Hochdruck-Gasröhren gefüllt mit Stickstoff oder Sauerstoff erzeugen. Nun allerdings ist es uns gelungen, die Energie der Laserpulse so stark zu erhöhen, dass die Filamente in gewöhnlicher Luft bei normalen Bedingungen gezündet werden“, sagt Skirmantas Alisauskas. Das Experiment wurde gemeinsam mit russischen Teams durchgeführt, mit einem Lasersystem am Russischen Quanten-Zentrum im Moskau, mit einer in Wien entwickelten Verstärkertechnologie.

Nächster Schritt: der Laser aus Luft

Die nächsten Schritte werden bereits geplant: Im Labor konnte das Team zeigen, dass der Infrarot-Laser mit Stickstoffatomen derart wechselwirken kann, dass nicht bloß ein leuchtendes Plasma-Filament entsteht, sondern das Filament selbst zu einem Laser wird, der direkt zurück zur Infrarot-Laserquelle leuchtet.

„Wenn es uns gelingt, diesen Effekt in einem Filament in der Atmosphäre hervorzurufen, könnten wir einen Laser am Himmel erzeugen. Wir hätten dann zwei Laserstrahlen, die sich entlang derselben Achse in beide Richtungen ausbreiten – einer, den wir nach oben schießen, und ein zweiter, der von der Luft selbst zurück auf die Erde gefeuert wird“, sagt Audrius Pugzlys. „Wenn die Moleküle dazwischen von zwei verschiedenen Lasern gleichzeitig getroffen werden, kann man sie über nichtlineare Streuprozesse sehr präzise untersuchen.“ Das Mid-Infrarot-Filament könnte verwendet werden um die Konzentration von Schadstoffen in der Luft zu messen oder um aus der Ferne schädliche Substanzen nach einem Chemie-Unfall nachzuweisen.

Rückfragehinweis:
Dr. Audrius Pugzlys
Institut für Photonik
TU Wien
Gusshausstraße 25-29, 1040 Wien
T: +43-1-58801-38720
audrius.pugzlys@tuwien.ac.at

Dr. Audrius Pugzlys
Institut für Photonik
TU Wien
Gusshausstraße 25-29, 1040 Wien
T: +43-1-58801-38777
skirmantas.alisauskas@tuwien.ac.at

Weitere Informationen:

http://www.nature.com/srep/2015/150217/srep08368/full/srep08368.html Originalpublikation in "Nature Scientific Reports"

Dr. Florian Aigner | Technische Universität Wien
Weitere Informationen:
http://www.tuwien.ac.at

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht MADMAX: Ein neues Experiment zur Erforschung der Dunklen Materie
20.10.2017 | Max-Planck-Institut für Physik

nachricht Hochfeldmagnet am BER II: Einblick in eine versteckte Ordnung
20.10.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hochfeldmagnet am BER II: Einblick in eine versteckte Ordnung

Seit dreißig Jahren gibt eine bestimmte Uranverbindung der Forschung Rätsel auf. Obwohl die Kristallstruktur einfach ist, versteht niemand, was beim Abkühlen unter eine bestimmte Temperatur genau passiert. Offenbar entsteht eine so genannte „versteckte Ordnung“, deren Natur völlig unklar ist. Nun haben Physiker erstmals diese versteckte Ordnung näher charakterisiert und auf mikroskopischer Skala untersucht. Dazu nutzten sie den Hochfeldmagneten am HZB, der Neutronenexperimente unter extrem hohen magnetischen Feldern ermöglicht.

Kristalle aus den Elementen Uran, Ruthenium, Rhodium und Silizium haben eine geometrisch einfache Struktur und sollten keine Geheimnisse mehr bergen. Doch das...

Im Focus: Schmetterlingsflügel inspiriert Photovoltaik: Absorption lässt sich um bis zu 200 Prozent steigern

Sonnenlicht, das von Solarzellen reflektiert wird, geht als ungenutzte Energie verloren. Die Flügel des Schmetterlings „Gewöhnliche Rose“ (Pachliopta aristolochiae) zeichnen sich durch Nanostrukturen aus, kleinste Löcher, die Licht über ein breites Spektrum deutlich besser absorbieren als glatte Oberflächen. Forschern am Karlsruher Institut für Technologie (KIT) ist es nun gelungen, diese Nanostrukturen auf Solarzellen zu übertragen und deren Licht-Absorptionsrate so um bis zu 200 Prozent zu steigern. Ihre Ergebnisse veröffentlichten die Wissenschaftler nun im Fachmagazin Science Advances. DOI: 10.1126/sciadv.1700232

„Der von uns untersuchte Schmetterling hat eine augenscheinliche Besonderheit: Er ist extrem dunkelschwarz. Das liegt daran, dass er für eine optimale...

Im Focus: Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

Im Blut zirkulierende Biomoleküle und Zellen sind Träger diagnostischer Information, deren Analyse hochwirksame, individuelle Therapien ermöglichen. Um diese Information zu erschließen, haben Wissenschaftler des Fraunhofer-Instituts für Lasertechnik ILT ein Mikrochip-basiertes Diagnosegerät entwickelt: Der »AnaLighter« analysiert und sortiert klinisch relevante Biomoleküle und Zellen in einer Blutprobe mit Licht. Dadurch können Frühdiagnosen beispielsweise von Tumor- sowie Herz-Kreislauf-Erkrankungen gestellt und patientenindividuelle Therapien eingeleitet werden. Experten des Fraunhofer ILT stellen diese Technologie vom 13.–16. November auf der COMPAMED 2017 in Düsseldorf vor.

Der »AnaLighter« ist ein kompaktes Diagnosegerät zum Sortieren von Zellen und Biomolekülen. Sein technologischer Kern basiert auf einem optisch schaltbaren...

Im Focus: Neue Möglichkeiten für die Immuntherapie beim Lungenkrebs entdeckt

Eine gemeinsame Studie der Universität Bern und des Inselspitals Bern zeigt, dass spezielle Bindegewebszellen, die in normalen Blutgefässen die Wände abdichten, bei Lungenkrebs nicht mehr richtig funktionieren. Zusätzlich unterdrücken sie die immunologische Bekämpfung des Tumors. Die Resultate legen nahe, dass diese Zellen ein neues Ziel für die Immuntherapie gegen Lungenkarzinome sein könnten.

Lungenkarzinome sind die häufigste Krebsform weltweit. Jährlich werden 1.8 Millionen Neudiagnosen gestellt; und 2016 starben 1.6 Millionen Menschen an der...

Im Focus: Sicheres Bezahlen ohne Datenspur

Ob als Smartphone-App für die Fahrkarte im Nahverkehr, als Geldwertkarten für das Schwimmbad oder in Form einer Bonuskarte für den Supermarkt: Für viele gehören „elektronische Geldbörsen“ längst zum Alltag. Doch vielen Kunden ist nicht klar, dass sie mit der Nutzung dieser Angebote weitestgehend auf ihre Privatsphäre verzichten. Am Karlsruher Institut für Technologie (KIT) entsteht ein sicheres und anonymes System, das gleichzeitig Alltagstauglichkeit verspricht. Es wird nun auf der Konferenz ACM CCS 2017 in den USA vorgestellt.

Es ist vor allem das fehlende Problembewusstsein, das den Informatiker Andy Rupp von der Arbeitsgruppe „Kryptographie und Sicherheit“ am KIT immer wieder...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Das Immunsystem in Extremsituationen

19.10.2017 | Veranstaltungen

Die jungen forschungsstarken Unis Europas tagen in Ulm - YERUN Tagung in Ulm

19.10.2017 | Veranstaltungen

Bauphysiktagung der TU Kaiserslautern befasst sich mit energieeffizienten Gebäuden

19.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Forscher finden Hinweise auf verknotete Chromosomen im Erbgut

20.10.2017 | Biowissenschaften Chemie

Saugmaschinen machen Waschwässer von Binnenschiffen sauberer

20.10.2017 | Ökologie Umwelt- Naturschutz

Strukturbiologieforschung in Berlin: DFG bewilligt Mittel für neue Hochleistungsmikroskope

20.10.2017 | Förderungen Preise