Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Laser-Lichtfasern am Himmel für die Untersuchung der Atmosphäre

18.02.2015

Eine Kooperation der TU Wien mit Forschungsteams aus Moskau hat nun einen Laser im mittleren Infrarotbereich hervorgebracht, der stark genug ist, Plasma-Filamente in der Luft zu erzeugen. Damit könnte man die Atmosphäre chemisch untersuchen.

Es sieht ein bisschen aus wie ein Lichtschwert aus einem Star-Wars-Film: Wenn ein extrem intensiver Laserpuls durch die Luft geschickt wird, dann kann er sich selbst fokussieren und eine dünne Lichtfaser erzeugen. Wenn man solche Licht-Filamente in den Himmel schickt und das zurückgestreute Licht analysiert, kann man Schadstoffe in der Luft untersuchen.


Laser Filamente in der Luft

TU Wien


Photonik-Team an der TU Wien: Skirmantas Alisauskas, Giedrius Andriukaitis, Tobias Floery, Andrius B ...

TU Wien

Dafür braucht man allerdings Laser im mittleren Infrarotbereich. Mit solchen Lasern ist es sehr schwierig, die kritische Intensität zur Herstellung einer Lichtfaser zu erreichen, daher gelang das bisher nur in Hochdruck-Gasröhren. Nun ist es allerdings einem österreichisch-russischen Team gelungen, einen Mid-Infrarot-Laser herzustellen, der so stark ist, dass er ein Laser-Filament in der Luft unter gewöhnlichen atmosphärischen Bedingungen erzeugt.

Die Luft selbst wird zur Linse

Normalerweise divergiert ein Lichtstrahl wenn er sich ausbreitet. Um den Strahl zu fokussieren braucht man irgendeine Art von Linse. „Ein intensiver Laserpuls kann eine solche Linse ganz von selbst erzeugen – und zwar direkt in der Luft“, sagt Audrius Pugzlys (Institut für Photonik, TU Wien). Der Brechungsindex der Luft hängt von der Intensität des Strahls ab. Diese Intensität ist nicht überall gleich, in der Mitte des Strahls ist sie höher. Dadurch kann die Luft zur fokussierenden Linse werden.

„Die Linse wird vom Laserstrahl erzeugt und wirkt dann ihrerseits wieder auf den Laserstrahl, indem sie ihn fokussiert und ein heißes Plasma hervorbringt. Dieses Plasma wiederum defokussiert den Strahl dann“, sagt Skirmantas Alisauskas (TU Wien). Das Wechselspiel aus fokussierenden und defokussierenden Effekten erzeugt eine dünne leuchtende Faser, die dutzende Zentimeter oder sogar einige Meter lang sein kann. Indem man die räumliche Verteilung und den zeitlichen Ablauf des Pulses genau steuert, kann man die Position am Himmel kontrollieren, an der das leuchtende Filament erzeugt werden soll.

Das mittlere Infrarot: der interessanteste Wellenlängenbereich

„Wenn eine solche Lichtfaser entsteht, generiert sie ein breites Spektrum an Strahlung im mittleren Infrarotbereich, die uns dann Auskunft über die chemische Zusammensetzung der Luft geben kann“, sagt Audrius Pugzlys. Viele Moleküle absorbieren Licht im mittleren Infrarotbereich auf ganz charakteristische Weise, sodass man sie eindeutig identifizieren kann. Man braucht daher starke Laserstrahlen in diesem Wellenlängenbereich, um mit Licht-Filamenten in der Atmosphäre chemische Analysen zu ermöglichen. Lange Zeit waren ausreichend hochenergetische Infrarot-Laserpulse nicht verfügbar.

Ein Team der TU Wien arbeitet seit Jahren daran, extrem energiereiche Laserpulse im Infrarot-Bereich herzustellen. „Schon seit einiger Zeit können wir Licht-Filamente in Hochdruck-Gasröhren gefüllt mit Stickstoff oder Sauerstoff erzeugen. Nun allerdings ist es uns gelungen, die Energie der Laserpulse so stark zu erhöhen, dass die Filamente in gewöhnlicher Luft bei normalen Bedingungen gezündet werden“, sagt Skirmantas Alisauskas. Das Experiment wurde gemeinsam mit russischen Teams durchgeführt, mit einem Lasersystem am Russischen Quanten-Zentrum im Moskau, mit einer in Wien entwickelten Verstärkertechnologie.

Nächster Schritt: der Laser aus Luft

Die nächsten Schritte werden bereits geplant: Im Labor konnte das Team zeigen, dass der Infrarot-Laser mit Stickstoffatomen derart wechselwirken kann, dass nicht bloß ein leuchtendes Plasma-Filament entsteht, sondern das Filament selbst zu einem Laser wird, der direkt zurück zur Infrarot-Laserquelle leuchtet.

„Wenn es uns gelingt, diesen Effekt in einem Filament in der Atmosphäre hervorzurufen, könnten wir einen Laser am Himmel erzeugen. Wir hätten dann zwei Laserstrahlen, die sich entlang derselben Achse in beide Richtungen ausbreiten – einer, den wir nach oben schießen, und ein zweiter, der von der Luft selbst zurück auf die Erde gefeuert wird“, sagt Audrius Pugzlys. „Wenn die Moleküle dazwischen von zwei verschiedenen Lasern gleichzeitig getroffen werden, kann man sie über nichtlineare Streuprozesse sehr präzise untersuchen.“ Das Mid-Infrarot-Filament könnte verwendet werden um die Konzentration von Schadstoffen in der Luft zu messen oder um aus der Ferne schädliche Substanzen nach einem Chemie-Unfall nachzuweisen.

Rückfragehinweis:
Dr. Audrius Pugzlys
Institut für Photonik
TU Wien
Gusshausstraße 25-29, 1040 Wien
T: +43-1-58801-38720
audrius.pugzlys@tuwien.ac.at

Dr. Audrius Pugzlys
Institut für Photonik
TU Wien
Gusshausstraße 25-29, 1040 Wien
T: +43-1-58801-38777
skirmantas.alisauskas@tuwien.ac.at

Weitere Informationen:

http://www.nature.com/srep/2015/150217/srep08368/full/srep08368.html Originalpublikation in "Nature Scientific Reports"

Dr. Florian Aigner | Technische Universität Wien
Weitere Informationen:
http://www.tuwien.ac.at

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion
23.06.2017 | Max-Planck-Institut für Astrophysik

nachricht Individualisierte Faserkomponenten für den Weltmarkt
22.06.2017 | Laser Zentrum Hannover e.V. (LZH)

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften