Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Laser-Lichtfasern am Himmel für die Untersuchung der Atmosphäre

18.02.2015

Eine Kooperation der TU Wien mit Forschungsteams aus Moskau hat nun einen Laser im mittleren Infrarotbereich hervorgebracht, der stark genug ist, Plasma-Filamente in der Luft zu erzeugen. Damit könnte man die Atmosphäre chemisch untersuchen.

Es sieht ein bisschen aus wie ein Lichtschwert aus einem Star-Wars-Film: Wenn ein extrem intensiver Laserpuls durch die Luft geschickt wird, dann kann er sich selbst fokussieren und eine dünne Lichtfaser erzeugen. Wenn man solche Licht-Filamente in den Himmel schickt und das zurückgestreute Licht analysiert, kann man Schadstoffe in der Luft untersuchen.


Laser Filamente in der Luft

TU Wien


Photonik-Team an der TU Wien: Skirmantas Alisauskas, Giedrius Andriukaitis, Tobias Floery, Andrius B ...

TU Wien

Dafür braucht man allerdings Laser im mittleren Infrarotbereich. Mit solchen Lasern ist es sehr schwierig, die kritische Intensität zur Herstellung einer Lichtfaser zu erreichen, daher gelang das bisher nur in Hochdruck-Gasröhren. Nun ist es allerdings einem österreichisch-russischen Team gelungen, einen Mid-Infrarot-Laser herzustellen, der so stark ist, dass er ein Laser-Filament in der Luft unter gewöhnlichen atmosphärischen Bedingungen erzeugt.

Die Luft selbst wird zur Linse

Normalerweise divergiert ein Lichtstrahl wenn er sich ausbreitet. Um den Strahl zu fokussieren braucht man irgendeine Art von Linse. „Ein intensiver Laserpuls kann eine solche Linse ganz von selbst erzeugen – und zwar direkt in der Luft“, sagt Audrius Pugzlys (Institut für Photonik, TU Wien). Der Brechungsindex der Luft hängt von der Intensität des Strahls ab. Diese Intensität ist nicht überall gleich, in der Mitte des Strahls ist sie höher. Dadurch kann die Luft zur fokussierenden Linse werden.

„Die Linse wird vom Laserstrahl erzeugt und wirkt dann ihrerseits wieder auf den Laserstrahl, indem sie ihn fokussiert und ein heißes Plasma hervorbringt. Dieses Plasma wiederum defokussiert den Strahl dann“, sagt Skirmantas Alisauskas (TU Wien). Das Wechselspiel aus fokussierenden und defokussierenden Effekten erzeugt eine dünne leuchtende Faser, die dutzende Zentimeter oder sogar einige Meter lang sein kann. Indem man die räumliche Verteilung und den zeitlichen Ablauf des Pulses genau steuert, kann man die Position am Himmel kontrollieren, an der das leuchtende Filament erzeugt werden soll.

Das mittlere Infrarot: der interessanteste Wellenlängenbereich

„Wenn eine solche Lichtfaser entsteht, generiert sie ein breites Spektrum an Strahlung im mittleren Infrarotbereich, die uns dann Auskunft über die chemische Zusammensetzung der Luft geben kann“, sagt Audrius Pugzlys. Viele Moleküle absorbieren Licht im mittleren Infrarotbereich auf ganz charakteristische Weise, sodass man sie eindeutig identifizieren kann. Man braucht daher starke Laserstrahlen in diesem Wellenlängenbereich, um mit Licht-Filamenten in der Atmosphäre chemische Analysen zu ermöglichen. Lange Zeit waren ausreichend hochenergetische Infrarot-Laserpulse nicht verfügbar.

Ein Team der TU Wien arbeitet seit Jahren daran, extrem energiereiche Laserpulse im Infrarot-Bereich herzustellen. „Schon seit einiger Zeit können wir Licht-Filamente in Hochdruck-Gasröhren gefüllt mit Stickstoff oder Sauerstoff erzeugen. Nun allerdings ist es uns gelungen, die Energie der Laserpulse so stark zu erhöhen, dass die Filamente in gewöhnlicher Luft bei normalen Bedingungen gezündet werden“, sagt Skirmantas Alisauskas. Das Experiment wurde gemeinsam mit russischen Teams durchgeführt, mit einem Lasersystem am Russischen Quanten-Zentrum im Moskau, mit einer in Wien entwickelten Verstärkertechnologie.

Nächster Schritt: der Laser aus Luft

Die nächsten Schritte werden bereits geplant: Im Labor konnte das Team zeigen, dass der Infrarot-Laser mit Stickstoffatomen derart wechselwirken kann, dass nicht bloß ein leuchtendes Plasma-Filament entsteht, sondern das Filament selbst zu einem Laser wird, der direkt zurück zur Infrarot-Laserquelle leuchtet.

„Wenn es uns gelingt, diesen Effekt in einem Filament in der Atmosphäre hervorzurufen, könnten wir einen Laser am Himmel erzeugen. Wir hätten dann zwei Laserstrahlen, die sich entlang derselben Achse in beide Richtungen ausbreiten – einer, den wir nach oben schießen, und ein zweiter, der von der Luft selbst zurück auf die Erde gefeuert wird“, sagt Audrius Pugzlys. „Wenn die Moleküle dazwischen von zwei verschiedenen Lasern gleichzeitig getroffen werden, kann man sie über nichtlineare Streuprozesse sehr präzise untersuchen.“ Das Mid-Infrarot-Filament könnte verwendet werden um die Konzentration von Schadstoffen in der Luft zu messen oder um aus der Ferne schädliche Substanzen nach einem Chemie-Unfall nachzuweisen.

Rückfragehinweis:
Dr. Audrius Pugzlys
Institut für Photonik
TU Wien
Gusshausstraße 25-29, 1040 Wien
T: +43-1-58801-38720
audrius.pugzlys@tuwien.ac.at

Dr. Audrius Pugzlys
Institut für Photonik
TU Wien
Gusshausstraße 25-29, 1040 Wien
T: +43-1-58801-38777
skirmantas.alisauskas@tuwien.ac.at

Weitere Informationen:

http://www.nature.com/srep/2015/150217/srep08368/full/srep08368.html Originalpublikation in "Nature Scientific Reports"

Dr. Florian Aigner | Technische Universität Wien
Weitere Informationen:
http://www.tuwien.ac.at

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Proteintransport - Stau in der Zelle
24.03.2017 | Ludwig-Maximilians-Universität München

nachricht Neuartige Halbleiter-Membran-Laser
22.03.2017 | Universität Stuttgart

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise