Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Laser-Heizung – Milliarden Grad heiße Elektronen in neuem Licht

14.11.2011
Eine neue Klasse von Hochleistungslasern kann mit extrem intensiven, kurzen Laserpulsen sehr effektiv Teilchen beschleunigen.

Deshalb interessieren sich Forschergruppen weltweit für den Beschleunigungsprozess, bei dem ein Laserstrahl auf eine dünne Folie gelenkt wird, um Ionen von der Folienrückseite auf hohe Energien zu beschleunigen. In diesem Prozess vermitteln die vom Laser geheizten Elektronen in der Folie den Energieübertrag zwischen den Ionen und dem Laserpuls. Physiker im Helmholtz-Zentrum Dresden-Rossendorf (HZDR) entwickelten nun ein neues theoretisches Modell, denn bisherige Modelle geben die Temperatur und die Dichte dieser heißen Elektronen nicht korrekt wider.


Trifft ein hochintensiver Laserpuls auf ein Ionen-Elektronen-Plasma (Ionen: orange, Elektronen: blau), werden Elektronen auf einige Milliarden Grad geheizt. Dies initiiert eine explosionsartige Expansion der Plasma-Ionen, welche dadurch auf hohe Energien beschleunigt werden. Im Hintergrund dargestellt ist die Verteilung der Elektronentemperatur während der Bestrahlung.

Als moderne Beschleunigertechnologie kommt die Teilchenbeschleunigung durch Licht mit erheblichen Vorteilen im Vergleich zu konventionellen Anlagen daher: die Beschleunigungsstrecke ist um Größenordnungen kürzer und die Kosten für solche Anlagen sind potentiell niedriger. So befindet sich derzeit auch am Universitätsklinikum in Dresden eine solche moderne Anlage zur Beschleunigung von Ionen im Bau, die gemeinsam von den Kooperationspartnern HZDR, Universitätsklinikum und TU Dresden zur Krebsforschung und -therapie genutzt werden soll. Erstmals wird hier neben einem konventionellen Ionenbeschleuniger der Prototyp eines Hochleistungslasers zum Einsatz kommen.

Neue Höchstleistungslaser wie der DRACO-Laser im Helmholtz-Zentrum Dresden-Rossendorf sind rund zehn- bis hundertfach so intensiv wie ihre Vorgänger, für welche die gängigen Formeln für Temperatur und Anzahl der heißen Elektronen mit den Experimenten noch mehr oder weniger gut übereinstimmten. Experiment und Berechnung klaffen jedoch für die neuen Laser auseinander, weshalb Thomas Kluge, Physiker in der Abteilung Laser-Teilchen-Beschleunigung des HZDR, zusammen mit Kollegen ein neues theoretisches Modell für die Laser-Elektronen-Wechselwirkung entwickelt hat. Die Elektronen spielen bei der Laser-Ionen-Beschleunigung die Rolle der Vermittler beim Energieübertrag vom Laser zu den Ionen, weshalb die exakte Kenntnis der heißen und dichten Elektronen von großer Bedeutung auch für die zukünftige Krebstherapie mit Ionen aus lasergetriebenen Anlagen ist.

Die bisherigen Modelle waren nicht in der Lage, die Eigenschaften der Elektronen insbesondere im äußerst interessanten Bereich sehr hoher Intensitäten – wie sie vom Hochleistungslaser DRACO und dem derzeit im Bau befindlichen Petawatt-Laser PENELOPE im HZDR erreicht werden – exakt vorherzusagen. Ausgehend von einer neuen Beschreibung der Verteilung der vom Laser beschleunigten Elektronen mit Hilfe der Relativitätstheorie konnten die Dresdner Wissenschaftler eine Gleichung angeben, mit deren Hilfe sich die Elektronenenergien exakt berechnen lassen.

“Die neuen Erkenntnisse erweitern Jahrzehnte alte Modelle und ermöglichen so zum einen die Erklärung bisheriger Messungen, zum anderen dienen sie dazu, zukünftige Experimente genau vorhersagen und optimieren zu können”, so Michael Bussmann, Leiter der Juniorgruppe “Computergestützte Strahlenphysik” im HZDR. Die Ergebnisse wurden im Fachmagazin „Physical Review Letters“ veröffentlicht und werden nun von den Dresdner Forschern auf weitere Beschleunigungsszenarien übertragen, um in Zukunft den klinischen Einsatz von Laserbeschleunigern zu ermöglichen.

Veröffentlichung
Die Originalarbeit ist unter dem Titel „Electron Temperature Scaling in Laser Interaction with Solids“ von T. Kluge, T.E. Cowan, A. Debus, U. Schramm, K. Zeil, M. Bussmann, in Physical Review Letters, Vol. 107, No. 20 veröffentlicht (DOI: 10.1103/PhysRevLett.107.205003) und unter http://link.aps.org/doi/10.1103/PhysRevLett.107.205003 abrufbar.
Weitere Informationen
Thomas Kluge
Abteilung Laser-Teilchenbeschleunigung im Institut für Strahlenphysik des HZDR
Tel. 0351 260 - 2618
t.kluge@hzdr.de
Dr. Michael Bussmann
Juniorgruppe Computergestützte Strahlenphysik
Tel. 0351 260 - 2616
m.bussmann@hzdr.de
Pressekontakt
Dr. Christine Bohnet
Helmholtz-Zentrum Dresden-Rossendorf
Pressesprecherin
Tel. 0351 260 - 2450 oder 0160 969 288 56
c.bohnet@hzdr.de
Das Helmholtz-Zentrum Dresden-Rossendorf (HZDR) hat das Ziel, langfristig ausgerichtete Spitzenforschung auf gesellschaftlich relevanten Gebieten zu leisten. Folgende Fragestellungen stehen hierbei im Fokus:
- Wie verhält sich Materie unter dem Einfluss hoher Felder und in kleinsten Dimensionen?
- Wie können Tumorerkrankungen frühzeitig erkannt und wirksam behandelt werden?
- Wie nutzt man Ressourcen und Energie effizient und sicher?
Zur Beantwortung dieser wissenschaftlichen Fragen werden fünf Großgeräte mit teils einmaligen Experimentiermöglichkeiten eingesetzt, die auch externen Nutzern zur Verfügung stehen.

Das HZDR ist seit 1.1.2011 Mitglied der Helmholtz-Gemeinschaft, der größten Wissenschaftsorganisation Deutschlands. Es hat vier Standorte in Dresden, Freiberg, Leipzig und Grenoble und beschäftigt rund 800 Mitarbeiter – davon 380 Wissenschaftler inklusive 120 Doktoranden.

Dr. Christine Bohnet | Helmholtz-Zentrum
Weitere Informationen:
http://www.hzdr.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Bilder magnetischer Strukturen auf der Nano-Skala
20.04.2018 | Georg-August-Universität Göttingen

nachricht Licht macht Ionen Beine
20.04.2018 | Max-Planck-Institut für Festkörperforschung, Stuttgart

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Software mit Grips

Ein computergestütztes Netzwerk zeigt, wie die Ionenkanäle in der Membran von Nervenzellen so verschiedenartige Fähigkeiten wie Kurzzeitgedächtnis und Hirnwellen steuern können

Nervenzellen, die auch dann aktiv sind, wenn der auslösende Reiz verstummt ist, sind die Grundlage für ein Kurzzeitgedächtnis. Durch rhythmisch aktive...

Im Focus: Der komplette Zellatlas und Stammbaum eines unsterblichen Plattwurms

Von einer einzigen Stammzelle zur Vielzahl hochdifferenzierter Körperzellen: Den vollständigen Stammbaum eines ausgewachsenen Organismus haben Wissenschaftlerinnen und Wissenschaftler aus Berlin und München in „Science“ publiziert. Entscheidend war der kombinierte Einsatz von RNA- und computerbasierten Technologien.

Wie werden aus einheitlichen Stammzellen komplexe Körperzellen mit sehr unterschiedlichen Funktionen? Die Differenzierung von Stammzellen in verschiedenste...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Grösster Elektrolaster der Welt nimmt Arbeit auf

20.04.2018 | Interdisziplinäre Forschung

Bilder magnetischer Strukturen auf der Nano-Skala

20.04.2018 | Physik Astronomie

Kieler Forschende entschlüsseln neuen Baustein in der Entwicklung des globalen Klimas

20.04.2018 | Geowissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics