Laser-Heizung – Milliarden Grad heiße Elektronen in neuem Licht

Trifft ein hochintensiver Laserpuls auf ein Ionen-Elektronen-Plasma (Ionen: orange, Elektronen: blau), werden Elektronen auf einige Milliarden Grad geheizt. Dies initiiert eine explosionsartige Expansion der Plasma-Ionen, welche dadurch auf hohe Energien beschleunigt werden. Im Hintergrund dargestellt ist die Verteilung der Elektronentemperatur während der Bestrahlung.<br>

Deshalb interessieren sich Forschergruppen weltweit für den Beschleunigungsprozess, bei dem ein Laserstrahl auf eine dünne Folie gelenkt wird, um Ionen von der Folienrückseite auf hohe Energien zu beschleunigen. In diesem Prozess vermitteln die vom Laser geheizten Elektronen in der Folie den Energieübertrag zwischen den Ionen und dem Laserpuls. Physiker im Helmholtz-Zentrum Dresden-Rossendorf (HZDR) entwickelten nun ein neues theoretisches Modell, denn bisherige Modelle geben die Temperatur und die Dichte dieser heißen Elektronen nicht korrekt wider.

Als moderne Beschleunigertechnologie kommt die Teilchenbeschleunigung durch Licht mit erheblichen Vorteilen im Vergleich zu konventionellen Anlagen daher: die Beschleunigungsstrecke ist um Größenordnungen kürzer und die Kosten für solche Anlagen sind potentiell niedriger. So befindet sich derzeit auch am Universitätsklinikum in Dresden eine solche moderne Anlage zur Beschleunigung von Ionen im Bau, die gemeinsam von den Kooperationspartnern HZDR, Universitätsklinikum und TU Dresden zur Krebsforschung und -therapie genutzt werden soll. Erstmals wird hier neben einem konventionellen Ionenbeschleuniger der Prototyp eines Hochleistungslasers zum Einsatz kommen.

Neue Höchstleistungslaser wie der DRACO-Laser im Helmholtz-Zentrum Dresden-Rossendorf sind rund zehn- bis hundertfach so intensiv wie ihre Vorgänger, für welche die gängigen Formeln für Temperatur und Anzahl der heißen Elektronen mit den Experimenten noch mehr oder weniger gut übereinstimmten. Experiment und Berechnung klaffen jedoch für die neuen Laser auseinander, weshalb Thomas Kluge, Physiker in der Abteilung Laser-Teilchen-Beschleunigung des HZDR, zusammen mit Kollegen ein neues theoretisches Modell für die Laser-Elektronen-Wechselwirkung entwickelt hat. Die Elektronen spielen bei der Laser-Ionen-Beschleunigung die Rolle der Vermittler beim Energieübertrag vom Laser zu den Ionen, weshalb die exakte Kenntnis der heißen und dichten Elektronen von großer Bedeutung auch für die zukünftige Krebstherapie mit Ionen aus lasergetriebenen Anlagen ist.

Die bisherigen Modelle waren nicht in der Lage, die Eigenschaften der Elektronen insbesondere im äußerst interessanten Bereich sehr hoher Intensitäten – wie sie vom Hochleistungslaser DRACO und dem derzeit im Bau befindlichen Petawatt-Laser PENELOPE im HZDR erreicht werden – exakt vorherzusagen. Ausgehend von einer neuen Beschreibung der Verteilung der vom Laser beschleunigten Elektronen mit Hilfe der Relativitätstheorie konnten die Dresdner Wissenschaftler eine Gleichung angeben, mit deren Hilfe sich die Elektronenenergien exakt berechnen lassen.

“Die neuen Erkenntnisse erweitern Jahrzehnte alte Modelle und ermöglichen so zum einen die Erklärung bisheriger Messungen, zum anderen dienen sie dazu, zukünftige Experimente genau vorhersagen und optimieren zu können”, so Michael Bussmann, Leiter der Juniorgruppe “Computergestützte Strahlenphysik” im HZDR. Die Ergebnisse wurden im Fachmagazin „Physical Review Letters“ veröffentlicht und werden nun von den Dresdner Forschern auf weitere Beschleunigungsszenarien übertragen, um in Zukunft den klinischen Einsatz von Laserbeschleunigern zu ermöglichen.

Veröffentlichung
Die Originalarbeit ist unter dem Titel „Electron Temperature Scaling in Laser Interaction with Solids“ von T. Kluge, T.E. Cowan, A. Debus, U. Schramm, K. Zeil, M. Bussmann, in Physical Review Letters, Vol. 107, No. 20 veröffentlicht (DOI: 10.1103/PhysRevLett.107.205003) und unter http://link.aps.org/doi/10.1103/PhysRevLett.107.205003 abrufbar.
Weitere Informationen
Thomas Kluge
Abteilung Laser-Teilchenbeschleunigung im Institut für Strahlenphysik des HZDR
Tel. 0351 260 – 2618
t.kluge@hzdr.de
Dr. Michael Bussmann
Juniorgruppe Computergestützte Strahlenphysik
Tel. 0351 260 – 2616
m.bussmann@hzdr.de
Pressekontakt
Dr. Christine Bohnet
Helmholtz-Zentrum Dresden-Rossendorf
Pressesprecherin
Tel. 0351 260 – 2450 oder 0160 969 288 56
c.bohnet@hzdr.de
Das Helmholtz-Zentrum Dresden-Rossendorf (HZDR) hat das Ziel, langfristig ausgerichtete Spitzenforschung auf gesellschaftlich relevanten Gebieten zu leisten. Folgende Fragestellungen stehen hierbei im Fokus:
– Wie verhält sich Materie unter dem Einfluss hoher Felder und in kleinsten Dimensionen?
– Wie können Tumorerkrankungen frühzeitig erkannt und wirksam behandelt werden?
– Wie nutzt man Ressourcen und Energie effizient und sicher?
Zur Beantwortung dieser wissenschaftlichen Fragen werden fünf Großgeräte mit teils einmaligen Experimentiermöglichkeiten eingesetzt, die auch externen Nutzern zur Verfügung stehen.

Das HZDR ist seit 1.1.2011 Mitglied der Helmholtz-Gemeinschaft, der größten Wissenschaftsorganisation Deutschlands. Es hat vier Standorte in Dresden, Freiberg, Leipzig und Grenoble und beschäftigt rund 800 Mitarbeiter – davon 380 Wissenschaftler inklusive 120 Doktoranden.

Media Contact

Dr. Christine Bohnet Helmholtz-Zentrum

Weitere Informationen:

http://www.hzdr.de/

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neue universelle lichtbasierte Technik zur Kontrolle der Talpolarisation

Ein internationales Forscherteam berichtet in Nature über eine neue Methode, mit der zum ersten Mal die Talpolarisation in zentrosymmetrischen Bulk-Materialien auf eine nicht materialspezifische Weise erreicht wird. Diese „universelle Technik“…

Tumorzellen hebeln das Immunsystem früh aus

Neu entdeckter Mechanismus könnte Krebs-Immuntherapien deutlich verbessern. Tumore verhindern aktiv, dass sich Immunantworten durch sogenannte zytotoxische T-Zellen bilden, die den Krebs bekämpfen könnten. Wie das genau geschieht, beschreiben jetzt erstmals…

Immunzellen in den Startlöchern: „Allzeit bereit“ ist harte Arbeit

Wenn Krankheitserreger in den Körper eindringen, muss das Immunsystem sofort reagieren und eine Infektion verhindern oder eindämmen. Doch wie halten sich unsere Abwehrzellen bereit, wenn kein Angreifer in Sicht ist?…

Partner & Förderer