Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Laser beschleunigt Protonen auf bisher höchste Energien

09.09.2009
Die Laser-Teilchenbeschleunigung ist ein aufstrebendes Gebiet der Physik, von dem in Zukunft erhebliche Fortschritte für die moderne Strahlentherapie bei Krebs erwartet werden.

Noch nie konnten Protonen mit einem Laser auf so hohe Energien beschleunigt werden, wie es jetzt einem internationalen Physikerteam, zu dem auch Wissenschaftler des Forschungszentrums Dresden-Rossendorf (FZD) gehören, gelungen ist. Strahlung in diesem Energiebereich ist z.B. nötig, um Augenkrebs zu behandeln.

Intensives Laserlicht, das auf Materie trifft, ist in der Lage, Teilchen auf mikroskopisch kleinen Strecken auf Energien zu beschleunigen, die sonst nur mit großen Beschleunigeranlagen möglich sind. Weltweit erforschen Physiker das Prinzip der Laser-Teilchenbeschleunigung, um damit Partikelstrahlung z.B. für den zukünftigen Einsatz in der Krebsbehandlung zu erzeugen.

Prof. Thomas Cowan, Direktor des Instituts für Strahlenphysik am Forschungszentrum Dresden-Rossendorf, ist einer der ersten Wissenschaftler, der Untersuchungen zur Laserbeschleunigung von Protonen durchführte. Die aktuellen Rekordmessungen sind das Ergebnis von Experimenten von Sandrine Gaillard im Rahmen ihrer Promotion, die von Prof. Cowan betreut wird.

Sie entstanden gemeinsam mit Wissenschaftlern des FZD, des Sandia National Laboratory, der University of Nevada, Reno, sowie der University of Missouri, Columbia, am Los Alamos National Laboratory in New Mexico, USA. Es wurden Strahlungsenergien von ca. 67 Megaelektronvolt (MeV) erzielt. 1 Elektronvolt ist die Bewegungsenergie, die ein Teilchen erhält, wenn es mit einer Spannung von 1 Volt beschleunigt wird.

Der neue Weltrekord in der Laser-Teilchenbeschleunigung ist wesentlich von speziell geformten Targets (Bild 1), also Zieloberflächen, abhängig. Die Wissenschaftler beschossen mit ultrakurzen Laserpulsen von rund 600 Femtosekunden (1 Femtosekunde = 1 Billiardstel Sekunde) und ca. 80 Joule dünne Folien, aus denen kegelartige Strukturen herausstülpen, deren Spitze wiederum mit einer hauchdünnen Folie bedeckt ist. Die Oberflächen wurden nanotechnologisch verändert und von der Firma Nanolabz hergestellt.

Wenn das intensive Laserlicht auf die Innenseiten dieser ambossartigen Mikrostrukturen trifft, treten Elektronen aus dem Material aus. Im Gegensatz zu glatten Oberflächen wirken die Mikrostrukturen wie eine Elektronenfalle und schließen die Elektronen ein. In dem dabei erzeugten elektrischen Feld können die Protonen auf höhere Energien als bisher möglich beschleunigt werden. Die Wissenschaftler setzten Röntgenstrahlung ein, um die Wechselwirkungen zwischen dem Laserstrahl und den Mikrostrukturen aufzuklären und abzubilden (Bild 2). Genauere Untersuchungen stehen noch aus, aber Computersimulationen, durchgeführt von FZD-Doktorand Thomas Kluge, beschreiben die neuen Daten bereits gut und ermöglichen damit tiefere theoretische Einblicke in die Prozesse. Als nächstes wollen die Forscher die Dichte des Protonenstrahls messen - neben der Energie eine wesentliche Voraussetzung für medizinische Anwendungen.

Die Rekordmessungen werden auf der 6. "International Fusion Sciences and Applications Conference" vorgestellt, die vom 6. bis 11. September 2009 in San Francisco, USA, stattfindet.

Bildunterschriften:
Bild 1: Pizza-Kegel-Target - von den Wissenschaftlern in Anlehnung an die Form einer Pizza so genannt - mit Laserstrahl (rot) von links

Bild 2: In der Röntgenaufnahme ist das tiefe Eindringen des Laserstrahls in die Kegelspitze deutlich zu erkennen.

Weitere Informationen:
Prof. Dr. Thomas Cowan
Direktor Institut für Strahlenphysik
Forschungszentrum Dresden-Rossendorf (FZD)
Tel.: 0351 260 - 2270
Email: t.cowan@fzd.de
Pressekontakt:
Dr. Christine Bohnet
Forschungszentrum Dresden-Rossendorf (FZD)
Presse- und Öffentlichkeitsarbeit
Bautzner Landstr. 400, 01328 Dresden
Tel.: 0351 260 - 2450 oder 0160 969 288 56
Email: presse@fzd.de
Information:
Das Forschungszentrum Dresden-Rossendorf (FZD) hat das Ziel, strategisch und langfristig ausgerichtete Spitzenforschung in politisch und gesellschaftlich relevanten Forschungsthemen wie Energie, Gesundheit, Struktur der Materie und Schlüsseltechnologien zu leisten. Folgende Fragestellungen stehen dabei im Mittelpunkt:
- Wie verhält sich Materie unter dem Einfluss hoher Felder und in kleinsten Dimensionen?
- Wie können Tumorerkrankungen frühzeitig erkannt und wirksam behandelt werden?
- Wie schützt man Mensch und Umwelt vor technischen Risiken?
Diese Fragestellungen werden in strategischen Kooperationen mit Forschungs- und Industriepartnern bearbeitet. Ein weiterer Schwerpunkt ist der Betrieb von sechs einmaligen Großgeräten, die auch externen Nutzern zur Verfügung stehen.

Das FZD wird als Mitglied der Leibniz-Gemeinschaft von Bund und Land gefördert, verfügt über ein Budget von mehr als 70 Mio. Euro (2008) und beschäftigt rund 750 Personen.

Dr. Christine Bohnet | idw
Weitere Informationen:
http://www.fzd.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion
23.06.2017 | Max-Planck-Institut für Astrophysik

nachricht Individualisierte Faserkomponenten für den Weltmarkt
22.06.2017 | Laser Zentrum Hannover e.V. (LZH)

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften