Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Laser-Beschleuniger: Erste Messergebnisse zur Polarisation des Kernspins veröffentlicht

17.02.2014
Kompakte Laser-Plasma-Beschleuniger sind im Begriff, klassische Teilchenbeschleuniger in immer mehr Bereichen zu ersetzen. Möglicherweise lassen sie sich auch als Quelle für polarisierte Teilchenstrahlen nutzen, wie erste Messungen von Jülicher und Düsseldorfer Wissenschaftlern nahelegen.

Derartige Teilchenstrahlen werden für hochpräzise kernphysikalische Experimente benötigt. In Kombination mit der neuen Beschleunigertechnologie können sie darüber hinaus neue Ansätze für die Fusionsenergie eröffnen. Die Ergebnisse wurden in der Fachzeitschrift Physics of Plasmas (doi: 10.1063/1.4865096) veröffentlicht.


Polarisation führt zu einer asymmetrischen Verteilung. Die gleichmäßige Verteilung ohne (links) und mit (rechts) Streuung an einem Target zeigt, dass die Teilchen nicht zusätzlich polarisiert werden.

Quelle: Natascha Raab / Universität zu Köln

Teilchenbeschleuniger sind ein unverzichtbares Werkzeug in vielen Feldern der Naturwissenschaften und Medizin. Sie geben Aufschluss über die Struktur und Eigenschaften der Materie. Zu medizinischen Zwecken eingesetzt helfen sie, Tumore zu entfernen und Kontrastmittel für bildgebende Verfahren zu gewinnen. Die hochenergetischen Teilchen, die benötigt werden, lassen sich mit herkömmlichen Beschleunigern allerdings nur mit hohem Aufwand gewinnen. Die Maschinen sind sehr komplexe, große und kostspielige Einrichtungen. Entsprechende Anlagen sind daher nur eingeschränkt verfügbar.

Beschleuniger, die mit Laserpulsen höchster Intensität arbeiten, können Teilchen dagegen schon in gewöhnlichen Laborräumen auf die notwendigen Geschwindigkeiten bringen – bei entsprechend geringerem Aufwand für Anschaffung und Betrieb. Die erste Generation dieser neuen Beschleunigertechnologie befindet sich seit einigen Jahren im Einsatz und wird seitdem für verschiedene neue Anwendungsfelder weiterentwickelt.

Neue Messmethode entwickelt
Die Arbeitsgruppe von Prof. Markus Büscher arbeitet daran, diese sogenannten Laser-Plasma-Beschleuniger für klassische Physikexperimente einzusetzen. „Wir haben eine Methode entwickelt, die es erstmals ermöglicht, die Polarisation der Teilchen an Laser-Beschleunigern zu messen. Dabei hat sich gezeigt, dass der sogenannte Spin oder Eigendrehimpuls der Protonen nicht durch die starken elektromagnetischen Felder ausgerichtet wird, die innerhalb des vom Laser erzeugten Plasmas vorherrschen“, erklärt der am Jülicher Peter Grünberg Institut sowie an der Düsseldorfer Universität tätige Physiker. Damit ist eine wichtige Voraussetzung erfüllt, um Laser zur Beschleunigung polarisierter Teilchen einzusetzen. Ob dies tatsächlich funktioniert, soll sich im Laufe des Jahres zeigen.

Die zugrundeliegenden Streuexperimente haben die Wissenschaftler an der Universität Düsseldorf durchgeführt und anschließend mit Ergebnissen verglichen, die mit konventionellen Teilchenbeschleunigern gewonnen wurden. Der Arcturus-Laser, der bei den Versuchen zum Einsatz kam, liefert hochintensive Terawatt-Pulse. Mit ihm werden Teilchen auf einige MeV beschleunigt. „Um die Intensität im Fokus mit gewöhnlichem Licht zu erzielen, müsste man das gesamte Licht, das von der Sonne auf die Erde fällt, auf eine Bleistiftspitze bündeln“, verdeutlicht Prof. Oswald Willi vom Düsseldorfer Institut für Laser- und Plasmaphysik. „Ein Laserpuls ist dafür aber auch nur extrem kurz und dauert nicht viel länger als eine Billiardstel Sekunde.“

Neue Option für die Fusion
Die gemessene Polarisation beschreibt die Ausrichtung der Spins. Normalerweise zeigen die Spins von Atomen, Atomkernen und Elektronen statistisch gleichmäßig in alle Richtungen. Sind die Spins dagegen gleich ausgerichtet, spricht man von einem polarisierten Teilchenstrahl. Dessen Eigenschaften bieten mehrere Vorteile. Die Polarisation reduziert die Anzahl der Freiheitsgrade bei kernphysikalischen Experimenten. Das erhöht die Aussagekraft der gemessenen Werte. Und es kann die Wahrscheinlichkeit – den sogenannten Wirkungsquerschnitt –, dass eine Reaktion zwischen zwei aufeinander treffenden Teilchen, stattfindet erhöhen.

„Aus der Vergrößerung des Wirkungsquerschnitts können sich völlig neue Anwendungsmöglichkeiten ergeben“, erläutert Markus Büscher. „Insbesondere die Energieausbeute von Fusionsreaktoren, zum Beispiel vom ITER-Typ, ließe sich mit polarisierten Teilchen um ein Vielfaches steigern.“ Die Entwicklung von Fusionsreaktoren zielt darauf ab, aus der Verschmelzung von Atomkernen Energie zu gewinnen. Ähnliche Prozesse finden auch im Innern der Sonne statt. Wenn es gelingt, sie eines Tages auf der Erde zu kontrollieren, kann die Fusion praktisch unerschöpfliche Mengen an sicherer und günstiger Energie liefern.

So funktioniert ein Laserbeschleuniger:
Zur Erzeugung des Teilchenstrahls schießt ein Laser auf eine dünne Folie. Die hohe Energie führt dazu, dass sich die Elektronen beim Auftreffen des Laserpulses von den Atomkernen lösen. Zwischen den positiv geladenen Atomrümpfen und der dahinter liegenden, negativ geladenen Elektronenwolke bildet sich ein elektromagnetisches Feld aus. Dieses Feld ist etwa eine Million Mal stärker als das konventioneller Teilchenbeschleuniger und daher in der Lage, die Atomkerne auf kürzester Distanz zu beschleunigen.
Animation zur Funktionsweise eines Laserbeschleunigers: http://www.fz-juelich.de/ias/jsc/EN/AboutUs/Organisation/ComputationalScience/Si...

Wissenschaftler erforschen mit Simulationen am Jülich Supercomputing Centre grundlegende Laser-Plasma-Wechselwirkungen. Die Erkenntnisse fließen in die Weiterentwicklung von Laser-Teilchenbeschleunigern ein. Auch die Messwerte der aktuellen Publikation zur Polarisation der Teilchen wurden mit Ergebnissen aus Computersimulationen verglichen.

Zukunftsprojekt JuSPARC:
Die Experimente zur Laser-induzierten Erzeugung polarisierter Strahlen sind auch ein wichtiger Schritt für die am Forschungszentrum geplante Kurzpulslaser-Anlage JuSPARC. Diese wird insbesondere für Versuche mit hoher Repetitionsrate – also einer hohen Pulsfrequenz – ausgelegt. Neben der Beschleuniger- und Hadronenphysik werden auch angrenzende Bereiche wie die Festkörper- und Energieforschung, die Informationstechnologie und die Strukturbiologie von der Einrichtung profitieren, die im Rahmen der Beschleunigerinitiative „Accelerator Research and Development“ der Helmholtz-Gemeinschaft in Jülich errichtet werden soll.
Originalveröffentlichung:
Polarization measurement of laser-accelerated protons
Natascha Raab, Markus Büscher, Mirela Cerchez, Ralf Engels, llhan Engin, Paul Gibbon, Patrick Greven, Astrid Holler, Anupam Karmakar, Andreas Lehrach, Rudolf Maier, Marco Swantusch, Monika Toncian, Toma Toncian and Oswald Willi

Phys. Plasmas 21 , 023104 (2014) ; http://dx.doi.org/10.1063/1.4865096

Weitere Informationen:

Peter Grünberg Institut, Elektronische Eigenschaften (PGI-6):
http://www.fz-juelich.de/pgi/pgi-6
Laser- und Plasmaphysik der Heinrich Heine Universität Düsseldorf: http://www.laserphy.uni-duesseldorf.de/index_ger.html
Kontakt:
Prof. Dr. Markus Büscher, Peter Grünberg Institut,
Elektronische Eigenschaften (PGI-6)
Tel. 02461 61-6669
m.buescher@fz-juelich.de
Pressekontakt:
Tobias Schlößer
Tel. 02461 61-4771
t.schloesser@fz-juelich.de

Annette Stettien | Forschungszentrum Jülich
Weitere Informationen:
http://www.fz-juelich.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Weniger (Flug-)Lärm dank Mathematik
21.09.2017 | Forschungszentrum MATHEON ECMath

nachricht Der stotternde Motor im Weltall
21.09.2017 | Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

23. Baltic Sea Forum am 11. und 12. Oktober nimmt Wirtschaftspartner Finnland in den Fokus

21.09.2017 | Veranstaltungen

6. Stralsunder IT-Sicherheitskonferenz im Zeichen von Smart Home

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

OLED auf hauchdünnem Edelstahl

21.09.2017 | Messenachrichten

Weniger (Flug-)Lärm dank Mathematik

21.09.2017 | Physik Astronomie

In Zeiten des Klimawandels: Was die Farbe eines Sees über seinen Zustand verrät

21.09.2017 | Geowissenschaften