Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Large Hadron Collider - First Step In An Area Unknown To Mankind

14.11.2008
In September 2008, the "dreamlike" LHC (Large Hadron Collider) was finally started after a 14-year construction process directed by high energy physicists. Like a science fiction fantasy, researchers re-created a state of the universe 0.000000000001 of a second after the universe was born.
Ichiro Oba, Professor, Faculty of Science and Engineering
Kouhei Yorita, Associate Professor, Faculty of Science and Engineering
In September 2008, the "dreamlike" LHC (Large Hadron Collider) was finally started after a 14-year construction process directed by high energy physicists. Protons accelerating to 99.9999991% of the speed of light collided in a 27-kilometer circumference tunnel built 100 meters below the surface at CERN (European Organization for Nuclear Research), in the suburbs of Geneva on the border of Switzerland and France. Like an SF fantasy, researchers have re-created a state of the universe 0.000000000001 of a second after the universe was born.

What can we learn from the LHC?

To answer this question, we first must ask ourselves "What is it we don't yet know?" Elementary particle physics studies how to find the root of matter. This understanding is directly linked to the answer to the question of how the university was created. On the surface, there may be the impression that there is no problem that cannot be solved by the Standard Model. In actuality, however, it is merely an effective theory in which the Standard Model has endured through rigorous experimental verifications and in which the behavior of elementary particles have been clearly described. Unfortunately, we are not yet able to clearly answer the simple question, "When and how was the particle mass created?"

To answer to this question, the Standard Model framework calls for the existence of a yet unknown particle called the Higgs particle. Finding this particle is the primary goal of the LHC and is the first step in throwing light on the ultimate answer. If the Standard Model is correct in this energy range, the particle definitely can be found by the LHC. The LHC also has a more profound and intriguing story. For example, it is expected that the supersymmetry particle (SUSY) will be found and new and unprecedented phenomenon related in the extra-dimension will appear. The supersymmetry particle is a candidate for dark matter, which is said to occupy 23% of the universe. The world is watching the LHC.

Going to experimental verification from theory debate

This year's Nobel Prize in Physics went to three Japanese theoretical physicists: Yoichiro Nambu, Hidetoshi Maskawa and Makoto Kobayashi. This is great honor for Japan. Not only has their work contributed to establish a basis for current elementary particle physics but it has also played an important role in defining the direction in which these elementary particle "experiments" go. They have also been rigorously researching ways to prove experimental results. Their work clearly shows that theories and experiments stimulate each other, providing mankind with new insights through a long series of tremendous efforts. For elementary particle physics, however, theories precede experimental verification; countless heated discussions have been held and the experiments on verifying them have not been impossible to be performed. One reason is that the energy that can be generated by an experiment is limited. This is where the LHC comes onstage. As the result of efforts by thousands of engineers and experimental physicists, and international cooperative study, the totally unknown energy range of 14TeV can be experimentally verified. Following that understanding, LHC can be a prologue for elementary particle physics which, in previous times, worked experimentally and theoretically at the same time.

Current and future state

For the first time ever on September 10, protons were successfully circulated in the LHC ring. A helium leakage occurred that was caused by an electrical system failure and the experiment was delayed for two months. This type of problem is not unusual for such a large-scale experiment and is not serious concern. The fact that it was successful to circulating protons in even one direction is proof of the excellence of the technology and the tremendous effort of the engineers and physicists working on the accelerator. There is no doubt that the energy level will reach 14TeV next spring, opening up a new era for particle physics. Frankly speaking, nobody knows what's going to be discovered by the LHC. Regardless of whether there is a new discovery or, nothing is found in our expectations. it is assured that new mysteries will be uncovered, changing the modality of elementary particle physics and influencing not only elementary physics but also adjacent scientific fields. We are on the eve of a revolution.

The Japanese group has made large contributions to the project. Currently, 15 institutions and about 100 researchers from Japan are deeply involved in the project. These institutions include the High Energy Accelerator Research Organization (KEK) and the International Center for Elementary Particle Physics (the University of Tokyo). The contribution of Japan, not just to the LHC but also the ATLAS experimental group (an international research group for the detector installed at the collision point), is tremendous. It is very encouraging to know that Japanese researchers and engineers are assuming leadership not only in theoretical areas but also in experimental areas. The experiment group from Waseda University is also likely to become involved as a member of such a large-scale international experimental project. We must first prove to ourselves that we can contribute to the international community and continued to move ahead by probing intellectual curiosity to search for the truth. The LHC experiment has great possibilities in that it allows us to discover the unexpected and profound physical laws that govern the universe. New discoveries create new mysteries. This profound world is as endless as we human beings with our curiosity and ceaseless efforts.

Ichiro Oba, Professor, Faculty of Science and Engineering
Kouhei Yorita, Assistant Professor, Faculty of Science and Engineering

waseda university | ResearchSEA
Further information:
http://public.web.cern.ch/Public/
http://atlas.ch/
http://atlas.kek.jp/

Further reports about: LHC Large Hadron Collider Physic Science Universe particle physics studies

More articles from Physics and Astronomy:

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Quantum thermometer or optical refrigerator?
23.06.2017 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften