Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie lange leben Elektronen in Graphen?

01.12.2011
Wissenschaftler aus dem Helmholtz-Zentrum Dresden-Rossendorf (HZDR) haben mit internationalen Kollegen einen wichtigen Baustein zum Verständnis des derzeit intensiv erforschten Materials Graphen hinzugefügt: sie haben die Lebensdauer von Elektronen in Graphen in niedrigen Energiebereichen bestimmt. Dies ist für die künftige Entwicklung schneller elektronischer und optoelektronischer Bauteile von großer Bedeutung. Die Ergebnisse sind vor Kurzem in der Onlineausgabe der Zeitschrift Physical Review Letters (DOI: 10.1103/PhysRevLett.107.237401) erschienen.

Spätestens seitdem die Entdeckung von Graphen im vergangenen Jahr mit dem Physiknobelpreis ausgezeichnet wurde, arbeiten viele Forschergruppen weltweit daran, die grundlegenden physikalischen Eigenschaften des Materials besser zu verstehen und damit zukunftsträchtige elektronische und optoelektronische Anwendungen, wie Transistoren und schnelle Detektoren zur optischen Datenübertragung, zu ermöglichen. Graphen – eine einlagige Kohlenstoffschicht, deren Atome wie in einer Bienenwabe sechseckig angeordnet sind – ist zudem als transparentes Elektrodenmaterial für Flachbildschirme und Solarzellen hochinteressant und könnte laut HZDR-Forscher Dr. Stephan Winnerl auf diesem Einsatzgebiet das knappe Hochtechnologiemetall Indium ersetzen.


Untersuchung von Graphen mit dem Freie-Elektronen-Laser am HZDR. Grafik: HZDR und AlexanderAlUS

Gefördert im Schwerpunktprogramm „Graphen“ der Deutschen Forschungsgemeinschaft sowie mit Mitteln der Europäischen Union ist es Stephan Winnerl und seinen Kollegen vom Helmholtz-Zentrum Dresden-Rossendorf (HZDR) gemeinsam mit Wissenschaftlern der Technischen Universität Berlin, des Grenoble High Magnetic Field Laboratory und des Georgia Institute of Technology, USA, gelungen, die „Lebensdauer“ von Elektronen in Graphen in niedrigen Energiebereichen zu bestimmen, die bisher nicht erforscht waren.

Das für Festkörper charakteristische Verhalten der Elektronen in bestimmten Energiebereichen ist eine von vielen physikalischen Eigenschaften, in denen sich Graphen fundamental von den meisten anderen Materialien unterscheidet: normalerweise können Elektronen nur bestimmte Energieniveaus annehmen (man spricht von Energiebändern), andere wiederum nicht (sie werden als Energielücken bezeichnet). Dieses Prinzip wird z.B. für optoelektronische Bauteile wie Leuchtdioden genutzt, die Licht ganz bestimmter Wellenlängen abstrahlen: dabei wird Energie frei, die die Elektronen beim ‚Überspringen’ der Energielücken abgeben.

Graphen verhält sich anders als andere Halbleiter: hier berühren sich die Energiebänder, ohne dass eine Lücke auftritt. Statt Licht abzugeben besitzt Graphen die Fähigkeit, Strahlung niedriger Energien unterhalb des sichtbaren Spektrums, wie Terahertz- und Infrarotlicht, zu absorbieren, sodass es sich bestens als Material für Detektoren eignet.

Um neue schnelle elektronische und optoelektronische Bauteile auf Basis von Graphen entwickeln zu können, muss genau bekannt sein, wie lange Elektronen auf bestimmten Energieniveaus verweilen. Zur Untersuchung solcher Prozesse, die sich im Pikosekundenbereich abspielen, also auf einer Zeitskala von einem Millionstel Teil einer Millionstel Sekunde, sind sehr schnelle Beobachtungsmethoden notwendig. Das Besondere der am Dresdner Helmholtz-Zentrum durchgeführten Experimente liegt darin, dass die Forscher Graphenproben erstmals mit längerwelligem Licht als bisher bestrahlt haben. Möglich wurde dies durch die kurzen Strahlungspulse aus dem Freie-Elektronen-Laser (FEL) am HZDR. Dadurch konnten die Forscher die Lebensdauer der Elektronen in der Nähe des Berührungspunktes der Energiebänder, der die physikalische Besonderheit von Graphen ausmacht, untersuchen.

Mithilfe des FEL wurden die Graphenproben mit Licht unterschiedlicher Wellenlängen im Infrarotbereich angeregt. Die Forscher stellten fest, dass die Energie der Lichtteilchen, mit denen die Elektronen stimuliert werden, und die Schwingungen des Atomgitters die Lebensdauer der Elektronen beeinflussen: wenn die Energie der Lichtteilchen größer ist als die Energie der Gitterschwingungen, ändern die Elektronen schneller ihren Energiezustand und haben eine kürzere Lebensdauer. Umgekehrt verweilen die Elektronen länger auf einem Energieniveau, wenn die Anregungsenergie kleiner ist als die der Gitterschwingungen.

Die experimentell gewonnenen Ergebnisse werden durch Modellrechnungen an der TU Berlin untermauert. Diese erlauben eine klare Zuordnung der experimentellen Daten zu physikalischen Mechanismen in Graphen. Die Forscher tragen somit zu einem besseren Verständnis der elektronischen und optischen Eigenschaften von Graphen bei.

Publikation: „Carrier dynamics in epitaxial graphene close to the Dirac point“, S. Winnerl, M. Orlita, P. Plochocka, P. Kossacki, M. Potemski, T. Winzer, E. Malic, A. Knorr, M. Sprinkle, C. Berger, W. A. de Heer, H. Schneider, M. Helm, Physical Review Letters 107, 237401 (2011), DOI: 10.1103/PhysRevLett.107.237401

Weitere Informationen
Dr. Stephan Winnerl
Institut für Ionenstrahlphysik und Materialforschung
Tel.: 0351 260-3522
s.winnerl@hzdr.de
Pressekontakt
Dr. Christine Bohnet
Helmholtz-Zentrum Dresden-Rossendorf
Pressesprecherin
Tel.: 0351 260-2450 oder 0160 969 288 56
c.bohnet@hzdr.de | www.hzdr.de
Das Helmholtz-Zentrum Dresden-Rossendorf (HZDR) hat das Ziel, langfristig ausgerichtete Spitzenforschung auf gesellschaftlich relevanten Gebieten zu leisten. Folgende Fragestellungen stehen hierbei im Fokus:
• Wie verhält sich Materie unter dem Einfluss hoher Felder und in kleinsten Dimensionen?
• Wie können Tumorerkrankungen frühzeitig erkannt und wirksam behandelt werden?
• Wie nutzt man Ressourcen und Energie effizient und sicher?
Zur Beantwortung dieser wissenschaftlichen Fragen werden fünf Großgeräte mit teils einmaligen Experimentiermöglichkeiten eingesetzt, die auch externen Nutzern zur Verfügung stehen.

Das HZDR ist seit 1.1.2011 Mitglied der Helmholtz-Gemeinschaft, der größten Wissenschaftsorganisation Deutschlands. Es hat vier Standorte in Dresden, Freiberg, Leipzig und Grenoble und beschäftigt rund 800 Mitarbeiter – davon 380 Wissenschaftler inklusive 120 Doktoranden.

Dr. Christine Bohnet | Helmholtz-Zentrum
Weitere Informationen:
http://www.hzdr.de/db/Cms?pOid=35009&pNid=99

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Bilder magnetischer Strukturen auf der Nano-Skala
20.04.2018 | Georg-August-Universität Göttingen

nachricht Licht macht Ionen Beine
20.04.2018 | Max-Planck-Institut für Festkörperforschung, Stuttgart

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Software mit Grips

Ein computergestütztes Netzwerk zeigt, wie die Ionenkanäle in der Membran von Nervenzellen so verschiedenartige Fähigkeiten wie Kurzzeitgedächtnis und Hirnwellen steuern können

Nervenzellen, die auch dann aktiv sind, wenn der auslösende Reiz verstummt ist, sind die Grundlage für ein Kurzzeitgedächtnis. Durch rhythmisch aktive...

Im Focus: Der komplette Zellatlas und Stammbaum eines unsterblichen Plattwurms

Von einer einzigen Stammzelle zur Vielzahl hochdifferenzierter Körperzellen: Den vollständigen Stammbaum eines ausgewachsenen Organismus haben Wissenschaftlerinnen und Wissenschaftler aus Berlin und München in „Science“ publiziert. Entscheidend war der kombinierte Einsatz von RNA- und computerbasierten Technologien.

Wie werden aus einheitlichen Stammzellen komplexe Körperzellen mit sehr unterschiedlichen Funktionen? Die Differenzierung von Stammzellen in verschiedenste...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Grösster Elektrolaster der Welt nimmt Arbeit auf

20.04.2018 | Interdisziplinäre Forschung

Bilder magnetischer Strukturen auf der Nano-Skala

20.04.2018 | Physik Astronomie

Kieler Forschende entschlüsseln neuen Baustein in der Entwicklung des globalen Klimas

20.04.2018 | Geowissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics