Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie lange leben Elektronen in Graphen?

01.12.2011
Wissenschaftler aus dem Helmholtz-Zentrum Dresden-Rossendorf (HZDR) haben mit internationalen Kollegen einen wichtigen Baustein zum Verständnis des derzeit intensiv erforschten Materials Graphen hinzugefügt: sie haben die Lebensdauer von Elektronen in Graphen in niedrigen Energiebereichen bestimmt. Dies ist für die künftige Entwicklung schneller elektronischer und optoelektronischer Bauteile von großer Bedeutung. Die Ergebnisse sind vor Kurzem in der Onlineausgabe der Zeitschrift Physical Review Letters (DOI: 10.1103/PhysRevLett.107.237401) erschienen.

Spätestens seitdem die Entdeckung von Graphen im vergangenen Jahr mit dem Physiknobelpreis ausgezeichnet wurde, arbeiten viele Forschergruppen weltweit daran, die grundlegenden physikalischen Eigenschaften des Materials besser zu verstehen und damit zukunftsträchtige elektronische und optoelektronische Anwendungen, wie Transistoren und schnelle Detektoren zur optischen Datenübertragung, zu ermöglichen. Graphen – eine einlagige Kohlenstoffschicht, deren Atome wie in einer Bienenwabe sechseckig angeordnet sind – ist zudem als transparentes Elektrodenmaterial für Flachbildschirme und Solarzellen hochinteressant und könnte laut HZDR-Forscher Dr. Stephan Winnerl auf diesem Einsatzgebiet das knappe Hochtechnologiemetall Indium ersetzen.


Untersuchung von Graphen mit dem Freie-Elektronen-Laser am HZDR. Grafik: HZDR und AlexanderAlUS

Gefördert im Schwerpunktprogramm „Graphen“ der Deutschen Forschungsgemeinschaft sowie mit Mitteln der Europäischen Union ist es Stephan Winnerl und seinen Kollegen vom Helmholtz-Zentrum Dresden-Rossendorf (HZDR) gemeinsam mit Wissenschaftlern der Technischen Universität Berlin, des Grenoble High Magnetic Field Laboratory und des Georgia Institute of Technology, USA, gelungen, die „Lebensdauer“ von Elektronen in Graphen in niedrigen Energiebereichen zu bestimmen, die bisher nicht erforscht waren.

Das für Festkörper charakteristische Verhalten der Elektronen in bestimmten Energiebereichen ist eine von vielen physikalischen Eigenschaften, in denen sich Graphen fundamental von den meisten anderen Materialien unterscheidet: normalerweise können Elektronen nur bestimmte Energieniveaus annehmen (man spricht von Energiebändern), andere wiederum nicht (sie werden als Energielücken bezeichnet). Dieses Prinzip wird z.B. für optoelektronische Bauteile wie Leuchtdioden genutzt, die Licht ganz bestimmter Wellenlängen abstrahlen: dabei wird Energie frei, die die Elektronen beim ‚Überspringen’ der Energielücken abgeben.

Graphen verhält sich anders als andere Halbleiter: hier berühren sich die Energiebänder, ohne dass eine Lücke auftritt. Statt Licht abzugeben besitzt Graphen die Fähigkeit, Strahlung niedriger Energien unterhalb des sichtbaren Spektrums, wie Terahertz- und Infrarotlicht, zu absorbieren, sodass es sich bestens als Material für Detektoren eignet.

Um neue schnelle elektronische und optoelektronische Bauteile auf Basis von Graphen entwickeln zu können, muss genau bekannt sein, wie lange Elektronen auf bestimmten Energieniveaus verweilen. Zur Untersuchung solcher Prozesse, die sich im Pikosekundenbereich abspielen, also auf einer Zeitskala von einem Millionstel Teil einer Millionstel Sekunde, sind sehr schnelle Beobachtungsmethoden notwendig. Das Besondere der am Dresdner Helmholtz-Zentrum durchgeführten Experimente liegt darin, dass die Forscher Graphenproben erstmals mit längerwelligem Licht als bisher bestrahlt haben. Möglich wurde dies durch die kurzen Strahlungspulse aus dem Freie-Elektronen-Laser (FEL) am HZDR. Dadurch konnten die Forscher die Lebensdauer der Elektronen in der Nähe des Berührungspunktes der Energiebänder, der die physikalische Besonderheit von Graphen ausmacht, untersuchen.

Mithilfe des FEL wurden die Graphenproben mit Licht unterschiedlicher Wellenlängen im Infrarotbereich angeregt. Die Forscher stellten fest, dass die Energie der Lichtteilchen, mit denen die Elektronen stimuliert werden, und die Schwingungen des Atomgitters die Lebensdauer der Elektronen beeinflussen: wenn die Energie der Lichtteilchen größer ist als die Energie der Gitterschwingungen, ändern die Elektronen schneller ihren Energiezustand und haben eine kürzere Lebensdauer. Umgekehrt verweilen die Elektronen länger auf einem Energieniveau, wenn die Anregungsenergie kleiner ist als die der Gitterschwingungen.

Die experimentell gewonnenen Ergebnisse werden durch Modellrechnungen an der TU Berlin untermauert. Diese erlauben eine klare Zuordnung der experimentellen Daten zu physikalischen Mechanismen in Graphen. Die Forscher tragen somit zu einem besseren Verständnis der elektronischen und optischen Eigenschaften von Graphen bei.

Publikation: „Carrier dynamics in epitaxial graphene close to the Dirac point“, S. Winnerl, M. Orlita, P. Plochocka, P. Kossacki, M. Potemski, T. Winzer, E. Malic, A. Knorr, M. Sprinkle, C. Berger, W. A. de Heer, H. Schneider, M. Helm, Physical Review Letters 107, 237401 (2011), DOI: 10.1103/PhysRevLett.107.237401

Weitere Informationen
Dr. Stephan Winnerl
Institut für Ionenstrahlphysik und Materialforschung
Tel.: 0351 260-3522
s.winnerl@hzdr.de
Pressekontakt
Dr. Christine Bohnet
Helmholtz-Zentrum Dresden-Rossendorf
Pressesprecherin
Tel.: 0351 260-2450 oder 0160 969 288 56
c.bohnet@hzdr.de | www.hzdr.de
Das Helmholtz-Zentrum Dresden-Rossendorf (HZDR) hat das Ziel, langfristig ausgerichtete Spitzenforschung auf gesellschaftlich relevanten Gebieten zu leisten. Folgende Fragestellungen stehen hierbei im Fokus:
• Wie verhält sich Materie unter dem Einfluss hoher Felder und in kleinsten Dimensionen?
• Wie können Tumorerkrankungen frühzeitig erkannt und wirksam behandelt werden?
• Wie nutzt man Ressourcen und Energie effizient und sicher?
Zur Beantwortung dieser wissenschaftlichen Fragen werden fünf Großgeräte mit teils einmaligen Experimentiermöglichkeiten eingesetzt, die auch externen Nutzern zur Verfügung stehen.

Das HZDR ist seit 1.1.2011 Mitglied der Helmholtz-Gemeinschaft, der größten Wissenschaftsorganisation Deutschlands. Es hat vier Standorte in Dresden, Freiberg, Leipzig und Grenoble und beschäftigt rund 800 Mitarbeiter – davon 380 Wissenschaftler inklusive 120 Doktoranden.

Dr. Christine Bohnet | Helmholtz-Zentrum
Weitere Informationen:
http://www.hzdr.de/db/Cms?pOid=35009&pNid=99

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Planeten außerhalb unseres Sonnensystems: Bayreuther Forscher dringen tief ins Weltall vor
23.02.2017 | Universität Bayreuth

nachricht Kühler Zwerg und die sieben Planeten
23.02.2017 | ESO Science Outreach Network - Haus der Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wie Proteine Zellmembranen verformen

Zellen schnüren regelmäßig kleine Bläschen von ihrer Außenhaut ab und nehmen sie in ihr Inneres auf. Daran sind die EHD-Proteine beteiligt, die Professor Oliver Daumke vom MDC erforscht. Er und sein Team haben nun aufgeklärt, wie sich diese Proteine auf der Oberfläche von Zellen zusammenlagern und dadurch deren Außenhaut verformen.

Zellen schnüren regelmäßig kleine Bläschen von ihrer Außenhaut ab und nehmen sie in ihr Inneres auf. Daran sind die EHD-Proteine beteiligt, die Professor...

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: „Vernetzte Autonome Systeme“ von acatech und DFKI auf der CeBIT

Auf der IT-Messe CeBIT vom 20. bis 24. März präsentieren acatech – Deutsche Akademie der Technikwissenschaften und das Deutsche Forschungszentrum für Künstliche Intelligenz (DFKI) in Kooperation mit der Deutschen Messe AG vernetzte Autonome Systeme. In Halle 12 am Stand B 63 erwarten die Besucherinnen und Besucher unter anderem Roboter, die Hand in Hand mit Menschen zusammenarbeiten oder die selbstständig gefährliche Umgebungen erkunden.

Auf der IT-Messe CeBIT vom 20. bis 24. März präsentieren acatech – Deutsche Akademie der Technikwissenschaften und das Deutsche Forschungszentrum für...

Im Focus: Kühler Zwerg und die sieben Planeten

Erdgroße Planeten mit gemäßigtem Klima in System mit ungewöhnlich vielen Planeten entdeckt

In einer Entfernung von nur 40 Lichtjahren haben Astronomen ein System aus sieben erdgroßen Planeten entdeckt. Alle Planeten wurden unter Verwendung von boden-...

Im Focus: Mehr Sicherheit für Flugzeuge

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem totalen Triebwerksausfall zum Einsatz kommt, um den Piloten ein sicheres Gleiten zu einem Notlandeplatz zu ermöglichen, und ein Assistenzsystem für Segelflieger, das ihnen das Erreichen größerer Höhen erleichtert. Präsentiert werden sie von Prof. Dr.-Ing. Wolfram Schiffmann auf der Internationalen Fachmesse für Allgemeine Luftfahrt AERO vom 5. bis 8. April in Friedrichshafen.

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Poseidon goes Politics – Wer oder was regiert die Ozeane?

27.02.2017 | Veranstaltungen

Fachtagung Rapid Prototyping 2017 – Innovationen in Entwicklung und Produktion

27.02.2017 | Veranstaltungen

Aufbruch: Forschungsmethoden in einer personalisierten Medizin

24.02.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Herz-Untersuchung: Kontrastmittel sparen mit dem Mini-Teilchenbeschleuniger

27.02.2017 | Medizintechnik

Neue Maßstäbe für eine bessere Wasserqualität in Europa

27.02.2017 | Biowissenschaften Chemie

Wenn der Schmerz keine Worte findet - Künstliche Intelligenz zur automatisierten Schmerzerkennung

27.02.2017 | Medizintechnik