Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kunststoffteilchen präzise steuern: Bayreuther Physiker finden ungewöhnliche Kolloide

27.02.2018

Physiker der Universität Bayreuth haben Kunststoffteilchen entdeckt, die es ermöglichen, Bewegungen einzelner Moleküle lückenlos zu beobachten und präzise zu steuern. Neuartige Mikrochips, die nur wenige Zehntelmillimeter groß sind und eine derartige Steuerung gewährleisten, sind daher keine Zukunftsmusik mehr. Bei den Kunststoffteilchen handelt es sich um Kolloide. Im Inneren eines komplexen, magnetisch strukturierten Materials verändern sie ihre Position kaum, an den Grenzen des Materials bewegen sie sich jedoch zügig voran.

Auf den Spuren der Nobelpreisträger


An den Grenzen des Materials bewegen sich die Kunststoffteilchen in ausgedehnten schleifenförmigen

Bahnen; im Inneren bewegen sie sich nur in geschlossenen Bahnen und verändern ihre Position

kaum.

Grafik: Lehrstuhl für Experimentalphysik V, Universität Bayreuth


Dr. Daniel de las Heras beim Aufbau der kolloidalen topologischen Isolatoren in einem Physiklabor der Universität Bayreuth.

Foto: Christian Wißler

Die Kolloide verhalten sich somit ähnlich wie die Elektronen topologischer Isolatoren. Dies ist eine Materialklasse, die seit wenigen Jahren die physikalische Forschung immer stärker fasziniert. Topologische Isolatoren zeichnen sich dadurch aus, dass sie an den Materialgrenzen elektrisch leitfähig sind, aber in ihrem Innern keinen elektrischen Strom hindurchlassen.

Es waren die britischen Physiker David Thouless, Duncan Haldane und Michael Kosterlitz, die mit theoretischen Berechnungen die Erforschung dieser Festkörper wesentlich vorangebracht haben und dafür 2016 mit dem Physik-Nobelpreis ausgezeichnet wurden. Seither stieg auch das Interesse an großen Partikeln, die ähnliche Eigenschaften wie die wesentlich kleineren Elektronen in topologischen Isolatoren haben und ihnen analog sind.

Den Bayreuther Physikern ist es nun erstmals gelungen, solche Partikel zu identifizieren. Es sind Kolloide, die an ihrer jeweiligen Position verharren, wenn sie im Innern eines komplexen Materials platziert sind. Doch an den Grenzen dieses Materials können sie sich entlanghangeln. Hier bewegen sie sich in schleifenförmigen Bahnen zügig fort. Bisher sind keine anderen Teilchen bekannt, die den Elektronen topologischer Isolatoren in dieser Weise ähnlich sind.

Künftige Chips als Miniatur-Laboratorien

Das außergewöhnliche Verhalten dieser Kolloide in und auf einem komplexen Material beruht auf dem strukturierten Magnetfeld, dem sie ausgesetzt sind. Infolge dieses Magnetfelds lässt sich die Fortbewegung der Kolloide auf der Oberfläche des Materials nicht nur ununterbrochen beobachten, sondern auch präzise steuern. Genau hier liegt ein vielversprechendes Potenzial für künftige Anwendungen in Forschung und Entwicklung:

„Auf den Kolloiden lassen sich – beispielsweise im Rahmen biomedizinischer Untersuchungen – einzelne Moleküle platzieren, die im Huckepack-Verfahren exakt von einer Position an eine andere gewünschte Position transportiert werden. Die Kolloide eignen sich daher für die Herstellung von Mikrochips, auf denen diese Prozesse exakt gesteuert und beobachtet werden können. Diese Chips wären dann Miniatur-Laboratorien für verschiedenste Experimente, die auf eine derartige präzise Steuerung angewiesen sind“, erklärt Dr. Daniel de las Heras, der die Forschungsarbeiten in Bayreuth gemeinsam mit Dr. Johannes Löhr vorangetrieben hat.

Forschungskooperationen:

Die jetzt in Communications Physics veröffentlichten Erkenntnisse sind hervorgegangen aus einer engen Zusammenarbeit mit Forschungsgruppen an der Universität Kassel und der Adam-Mickiewicz-UniversitätPoznań.

Veröffentlichung:

Loehr, J., de las Heras, D., Jarosz, A., Urbaniak, M., Stobiecki, F., Tomita, A., Huhnstock, R., Koch, I., Ehresmann, A., Holzinger, D. & Fischer, Th. M., Colloidal topological insulators. Communication Physics (2018), DOI: 10.1038/s42005-017-0004-1

Kontakt:

Prof. Dr. Thomas Fischer
Lehrstuhl für Experimentalphysik V
Universität Bayreuth
Telefon: +49 (0)921 55-3342
E-Mail: thomas.fischer@uni-bayreuth.de

Christian Wißler | Universität Bayreuth
Weitere Informationen:
http://www.uni-bayreuth.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Biophysik - Blitzlicht aus der Nanowelt
24.04.2018 | Ludwig-Maximilians-Universität München

nachricht Moleküle brillant beleuchtet
23.04.2018 | Max-Planck-Institut für Quantenoptik

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: Innovatives 3D-Druckverfahren für die Raumfahrt

Auf der Hannover Messe 2018 präsentiert die Bundesanstalt für Materialforschung und -prüfung (BAM), wie Astronauten in Zukunft Werkzeug oder Ersatzteile per 3D-Druck in der Schwerelosigkeit selbst herstellen können. So können Gewicht und damit auch Transportkosten für Weltraummissionen deutlich reduziert werden. Besucherinnen und Besucher können das innovative additive Fertigungsverfahren auf der Messe live erleben.

Pulverbasierte additive Fertigung unter Schwerelosigkeit heißt das Projekt, bei dem ein Bauteil durch Aufbringen von Pulverschichten und selektivem...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: IWS-Ingenieure formen moderne Alu-Bauteile für zukünftige Flugzeuge

Mit Unterdruck zum Leichtbau-Flugzeug

Ingenieure des Fraunhofer-Instituts für Werkstoff- und Strahltechnik (IWS) in Dresden haben in Kooperation mit Industriepartnern ein innovatives Verfahren...

Im Focus: Moleküle brillant beleuchtet

Physiker des Labors für Attosekundenphysik, der Ludwig-Maximilians-Universität und des Max-Planck-Instituts für Quantenoptik haben eine leistungsstarke Lichtquelle entwickelt, die ultrakurze Pulse über einen Großteil des mittleren Infrarot-Wellenlängenbereichs generiert. Die Wissenschaftler versprechen sich von dieser Technologie eine Vielzahl von Anwendungen, unter anderem im Bereich der Krebsfrüherkennung.

Moleküle sind die Grundelemente des Lebens. Auch wir Menschen bestehen aus ihnen. Sie steuern unseren Biorhythmus, zeigen aber auch an, wenn dieser erkrankt...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

infernum-Tag 2018: Digitalisierung und Nachhaltigkeit

24.04.2018 | Veranstaltungen

Fraunhofer eröffnet Community zur Entwicklung von Anwendungen und Technologien für die Industrie 4.0

23.04.2018 | Veranstaltungen

Mars Sample Return – Wann kommen die ersten Gesteinsproben vom Roten Planeten?

23.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Demographie beeinflusst Brutfürsorge bei Regenpfeifern

25.04.2018 | Biowissenschaften Chemie

Die Zukunft des Fliegens auf dem Prüfstand

25.04.2018 | Maschinenbau

Rittal digitalisiert Fertigung - Produktion weltweit nach Industrie 4.0

25.04.2018 | HANNOVER MESSE

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics