Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kunststoffe machen das Licht an

11.09.2012
Zusammenhang von Licht und Materie auf Molekülebene im Blick: Neues Regensburger Projekt wird mit 1,5 Millionen Euro durch den Europäischen Forschungsrat gefördert.

Sie stellen den zentralen Baustein für Solarzellen oder für organische Leuchtdioden (OLEDs) dar: Polymere. Das sind kettenförmige Makromoleküle, die aus kleinen Untereinheiten (Chromophoren) bestehen, welche wiederum Licht abstrahlen, wenn man elektrischen Strom hindurchleitet. Aufgrund ihrer Größe und Struktur besitzen Polymere Eigenschaften eines Halbleiters.


Eine OLED besteht aus Abermilliarden von Molekülen, die unterschiedliche Formen haben und sich auf vielseitige Weise anordnen können. Mittels der Einzelmolekülspektroskopie lassen sich individuelle Moleküle als Punkte im Mikroskopbild (rechts) isolieren und untersuchen.

Foto: Universität Regensburg

Im Gegensatz zu herkömmlichen Halbleitern wie Silizium, Galliumarsenid oder Cadmiumsulfid haben die Kunststoffe den Vorteil, dass sie relativ simpel, nachhaltig und umweltschonend hergestellt werden können und flexibel einsetzbar sind. Wie sich die molekularen Bausteine zu einem organischen Festkörper zusammenfügen, was dabei in den Makromolekülen im Detail vor sich geht und wie ihre physikalischen Eigenschaften - etwa die Lichtemission - mit der chemischen Struktur zusammenhängt, ist allerdings noch nicht vollständig geklärt.

Regensburger Forscher wollen im Rahmen eines neuen Forschungsprojekts den Zusammenhang zwischen molekularem Aufbau und optischen Eigenschaften der Polymere aufklären. Die Physiker hoffen, mit ihren Untersuchungen langfristig die Eigenschaften unterschiedlicher Polymere vorhersagen und – darauf aufbauend – gezielt neue Makromoleküle mit vordefinierten optoelektronischen Eigenschaften entwickeln zu können. Das Projekt mit dem Titel „MolMesON - Molecular Mesoscopics for Organic Nano-Optoelectronics” wird ab Dezember 2012 über fünf Jahre mit knapp 1,5 Millionen Euro durch einen Starting Grant des Europäischen Forschungsrats (European Research Council - ERC) gefördert. Koordiniert wird es durch Prof. Dr. John Lupton vom Institut für Experimentelle und Angewandte Physik der Universität Regensburg.

Für Ihre Untersuchungen nutzen die Forscher ein besonderes Verfahren, bei dem die Eigenschaften einzelner Moleküle analysiert werden können. Mit Hilfe der Einzelmolekül-Fluoreszenzmikroskopie können sie die Moleküle lokalisieren und ihre jeweilige Lichtemission bestimmen. Doch nicht jedes Molekül gleicht dem anderen. Während die Lichtemission des Festkörpers, der aus Abermilliarden von Molekülen besteht, einen Großteil des sichtbaren Spektralbereichs mit grünen, gelben und roten Komponenten ausfüllt, lässt sich ein einzelnes Molekül einer einzigen Emissionsfarbe – zum Beispiel „Gelb“ – zuordnen. Daraus kann man schließen, dass ein Festkörper aus grünen, gelben und roten Molekülen besteht, die sich in ihrer Form und ihrer Funktion voneinander unterscheiden.

Je nachdem, welche Anwendung in der organischen Elektronik angestrebt wird, müssen Moleküle also entsprechend ihrer Form ausgewählt werden. Für eine Weißlichtquelle, die die klassische Tischlampe ersetzen soll, wäre es wünschenswert, möglichst viele Spektralkomponenten in einem Material abzudecken: Man würde also eine Substanz wählen, die möglichst „ungeordnet“ erscheint. In einem solchen Stoff könnte man die einzelnen Molekülstränge auch mit gekochten Spaghetti vergleichen, bei denen alle möglichen Längen, Verbiegungen und Orientierungen existieren. Für eine OLED-Displayanwendung in einem Mobiltelefon, bei der einzelne Farbpixel individuell angesprochen werden sollen, wäre es dagegen wünschenswert, möglichst „saubere“ Farben zu generieren. In einem solchen Fall empfehlen sich Moleküle, die sich eher wie ungekochte Spaghetti verhalten, bei denen alle Stränge die gleiche Form und Länge aufweisen.
Mittels der Einzelmolekülfluoreszenz lässt sich die Form des Moleküls direkt mit seiner chemischen Struktur sowie mit seinen elektronischen Eigenschaften in Verbindung bringen. Über diesen grundlegenden Zusammenhang können durch die Zusammenarbeit von Chemikern und Physikern Materialien für eine bestimmte Anwendung optimiert werden.

Ansprechpartner für Medienvertreter:
Prof. Dr. John Lupton
Universität Regensburg
Institut für Experimentelle und Angewandte Physik
Tel.: 0941 943-2081
John.Lupton@physik.uni-regensburg.de

Alexander Schlaak | idw
Weitere Informationen:
http://www.uni-regensburg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Vorstoß ins Innere der Atome
23.02.2018 | Max-Planck-Institut für Quantenoptik

nachricht Quanten-Wiederkehr: Alles wird wieder wie früher
23.02.2018 | Technische Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics