Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kunststoffe machen das Licht an

11.09.2012
Zusammenhang von Licht und Materie auf Molekülebene im Blick: Neues Regensburger Projekt wird mit 1,5 Millionen Euro durch den Europäischen Forschungsrat gefördert.

Sie stellen den zentralen Baustein für Solarzellen oder für organische Leuchtdioden (OLEDs) dar: Polymere. Das sind kettenförmige Makromoleküle, die aus kleinen Untereinheiten (Chromophoren) bestehen, welche wiederum Licht abstrahlen, wenn man elektrischen Strom hindurchleitet. Aufgrund ihrer Größe und Struktur besitzen Polymere Eigenschaften eines Halbleiters.


Eine OLED besteht aus Abermilliarden von Molekülen, die unterschiedliche Formen haben und sich auf vielseitige Weise anordnen können. Mittels der Einzelmolekülspektroskopie lassen sich individuelle Moleküle als Punkte im Mikroskopbild (rechts) isolieren und untersuchen.

Foto: Universität Regensburg

Im Gegensatz zu herkömmlichen Halbleitern wie Silizium, Galliumarsenid oder Cadmiumsulfid haben die Kunststoffe den Vorteil, dass sie relativ simpel, nachhaltig und umweltschonend hergestellt werden können und flexibel einsetzbar sind. Wie sich die molekularen Bausteine zu einem organischen Festkörper zusammenfügen, was dabei in den Makromolekülen im Detail vor sich geht und wie ihre physikalischen Eigenschaften - etwa die Lichtemission - mit der chemischen Struktur zusammenhängt, ist allerdings noch nicht vollständig geklärt.

Regensburger Forscher wollen im Rahmen eines neuen Forschungsprojekts den Zusammenhang zwischen molekularem Aufbau und optischen Eigenschaften der Polymere aufklären. Die Physiker hoffen, mit ihren Untersuchungen langfristig die Eigenschaften unterschiedlicher Polymere vorhersagen und – darauf aufbauend – gezielt neue Makromoleküle mit vordefinierten optoelektronischen Eigenschaften entwickeln zu können. Das Projekt mit dem Titel „MolMesON - Molecular Mesoscopics for Organic Nano-Optoelectronics” wird ab Dezember 2012 über fünf Jahre mit knapp 1,5 Millionen Euro durch einen Starting Grant des Europäischen Forschungsrats (European Research Council - ERC) gefördert. Koordiniert wird es durch Prof. Dr. John Lupton vom Institut für Experimentelle und Angewandte Physik der Universität Regensburg.

Für Ihre Untersuchungen nutzen die Forscher ein besonderes Verfahren, bei dem die Eigenschaften einzelner Moleküle analysiert werden können. Mit Hilfe der Einzelmolekül-Fluoreszenzmikroskopie können sie die Moleküle lokalisieren und ihre jeweilige Lichtemission bestimmen. Doch nicht jedes Molekül gleicht dem anderen. Während die Lichtemission des Festkörpers, der aus Abermilliarden von Molekülen besteht, einen Großteil des sichtbaren Spektralbereichs mit grünen, gelben und roten Komponenten ausfüllt, lässt sich ein einzelnes Molekül einer einzigen Emissionsfarbe – zum Beispiel „Gelb“ – zuordnen. Daraus kann man schließen, dass ein Festkörper aus grünen, gelben und roten Molekülen besteht, die sich in ihrer Form und ihrer Funktion voneinander unterscheiden.

Je nachdem, welche Anwendung in der organischen Elektronik angestrebt wird, müssen Moleküle also entsprechend ihrer Form ausgewählt werden. Für eine Weißlichtquelle, die die klassische Tischlampe ersetzen soll, wäre es wünschenswert, möglichst viele Spektralkomponenten in einem Material abzudecken: Man würde also eine Substanz wählen, die möglichst „ungeordnet“ erscheint. In einem solchen Stoff könnte man die einzelnen Molekülstränge auch mit gekochten Spaghetti vergleichen, bei denen alle möglichen Längen, Verbiegungen und Orientierungen existieren. Für eine OLED-Displayanwendung in einem Mobiltelefon, bei der einzelne Farbpixel individuell angesprochen werden sollen, wäre es dagegen wünschenswert, möglichst „saubere“ Farben zu generieren. In einem solchen Fall empfehlen sich Moleküle, die sich eher wie ungekochte Spaghetti verhalten, bei denen alle Stränge die gleiche Form und Länge aufweisen.
Mittels der Einzelmolekülfluoreszenz lässt sich die Form des Moleküls direkt mit seiner chemischen Struktur sowie mit seinen elektronischen Eigenschaften in Verbindung bringen. Über diesen grundlegenden Zusammenhang können durch die Zusammenarbeit von Chemikern und Physikern Materialien für eine bestimmte Anwendung optimiert werden.

Ansprechpartner für Medienvertreter:
Prof. Dr. John Lupton
Universität Regensburg
Institut für Experimentelle und Angewandte Physik
Tel.: 0941 943-2081
John.Lupton@physik.uni-regensburg.de

Alexander Schlaak | idw
Weitere Informationen:
http://www.uni-regensburg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Bilder magnetischer Strukturen auf der Nano-Skala
20.04.2018 | Georg-August-Universität Göttingen

nachricht Licht macht Ionen Beine
20.04.2018 | Max-Planck-Institut für Festkörperforschung, Stuttgart

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Software mit Grips

Ein computergestütztes Netzwerk zeigt, wie die Ionenkanäle in der Membran von Nervenzellen so verschiedenartige Fähigkeiten wie Kurzzeitgedächtnis und Hirnwellen steuern können

Nervenzellen, die auch dann aktiv sind, wenn der auslösende Reiz verstummt ist, sind die Grundlage für ein Kurzzeitgedächtnis. Durch rhythmisch aktive...

Im Focus: Der komplette Zellatlas und Stammbaum eines unsterblichen Plattwurms

Von einer einzigen Stammzelle zur Vielzahl hochdifferenzierter Körperzellen: Den vollständigen Stammbaum eines ausgewachsenen Organismus haben Wissenschaftlerinnen und Wissenschaftler aus Berlin und München in „Science“ publiziert. Entscheidend war der kombinierte Einsatz von RNA- und computerbasierten Technologien.

Wie werden aus einheitlichen Stammzellen komplexe Körperzellen mit sehr unterschiedlichen Funktionen? Die Differenzierung von Stammzellen in verschiedenste...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Grösster Elektrolaster der Welt nimmt Arbeit auf

20.04.2018 | Interdisziplinäre Forschung

Bilder magnetischer Strukturen auf der Nano-Skala

20.04.2018 | Physik Astronomie

Kieler Forschende entschlüsseln neuen Baustein in der Entwicklung des globalen Klimas

20.04.2018 | Geowissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics