Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kundschafter im blauen Rauschen

07.10.2011
Das leiseste Zittern genügt, um etwas mitzuteilen.

Kleine Teilchen, die in einer Flüssigkeit gelöst sind, registrieren, was in ihrem Umfeld vor sich geht, und reagieren darauf. Ohne ausgetüftelte Messanordnung und ein hochpräzises Instrumentarium ist nicht zu entziffern, wie ihre Botschaft lautet, doch wenn es gelingt, warten erstaunliche Auskünfte auf die Dechiffrierexperten.


Mit Hilfe einer Kombination aus theoretischem Unterbau und sehr diffizilen Experimenten konnten Physiker und Physikerinnen aus Erlangen, Lausanne und Basel erstmals beobachten, wie sich kleine Partikel in einem Lösungsmittel verhalten. Was sich dabei ergibt, wirkt zunächst fantastisch: Der Bewegung eines Teilchen kann eine Farbe zugeordnet werden.

Thomas Franosch, Professor am Institut für Theoretische Physik der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), stuft das Ergebnis sachlicher ein. „Damit hat sich eine Annahme bestätigt, die in Fachkreisen seit fünfzig Jahren gilt“, erklärt der Erstautor der Studie zu diesem Thema, die am heutigen Donnerstag in der Fachzeitschrift ‚Nature‘ erscheint 1). „Bis jetzt war es allerdings nicht möglich, das Spektrum der Kräfte, die auf die Partikel wirken, direkt zu messen.“ Der Forschergruppe gelang dies, indem sie starke optische Fallen einsetzte, in denen ein einzelnes Teilchen festgehalten werden kann.

Chaos im Kaffee

Eine der Säulen der modernen theoretischen Physik ist die ‚Brownsche Molekularbewegung‘.Wer Partikel in einer Lösung, beispielsweise Kaffeepulver in heißem Wasser, unter dem Mikroskop betrachtet, sieht eine Breakdance-Vorstellung im Miniaturformat. Unter der reglos erscheinenden Oberfläche tobt das Chaos. Das Zucken und Zappeln jedes einzelnen Teilchens lässt sich grundsätzlich nicht vorhersagen. Diese Bewegung ist nach dem schottischen Botaniker Robert Brown benannt, der Pollenkörnchen in Wassertropfen studierte und deren „Tanzfiguren“ zuerst als Hinweis auf ihre Lebenskraft wertete.

Was im 19. Jahrhundert noch vorstellbar war, wurde längst durch eine prosaische Erklärung ersetzt: Wassermoleküle stoßen ständig von allen Seiten gegen die größeren, sichtbaren Pollen. Dasselbe gilt für die Teilchen anderer Lösungen. Die Bewegung nimmt mit steigender Temperatur zu; die hier wirksamen Kräfte werden dementsprechend als thermisch bezeichnet. 1905 legte Albert Einstein seine Doktorarbeit vor. In diesem berühmten Werk bestimmte er näherungsweise eine Kennzahl, die proportional zur Temperatur ist und den enger Zusammenhang zwischen der Reibung eines in einer Flüssigkeit gelösten Partikels und den zufallsbedingten Stößen der Flüssigkeitsteilchen wiedergibt.

Ins Blaue hinein

Eine bildhafte Vorstellung der Vorgänge in einer Flüssigkeit gelingt durch den Vergleich mit zwei Sinneswahrnehmungen: Hören und Sehen. Wie die Überlagerung von Radiowellen wird das unregelmäßige Zappeln der Moleküle als „Rauschen“ bezeichnet. Da alle Strahlungen mit unterschiedlichen Frequenzen einander ebenfalls überlagern können, „rauschen“ auch Lichtwellen. „Kommt hier, wie beim Sonnenlicht, das vollständige Spektrum zusammen, entsteht Weiß. Fehlt ein Teil des Spektrums, sehen wir Farben“, erläutert Prof. Franosch. Einstein kam zu einer näherungsweisen Beschreibung, die auf der Annahme basierte, die Brownsche Molekularbewegung werde durch weißes Rauschen angetrieben. Durch neuartige Messgeräte und Weiterentwicklungen der Mathematik kamen leichte Abweichungen zu Tage. Die deutsch-schweizerische Forschungsgruppe stellte nun fest: Das Spektrum zeigt eine Verschiebung ins Blaue.

Dazu war es erforderlich, höchst präzise Messgeräte mit äußerst wirksamen Fallen zu kombinieren. Ein Laserstrahl hält ein gelöstes Teilchen aufgrund seiner optischen Eigenschaften fest. Auf den eingefangenen Partikel werden Detektoren mit einer Ortsauflösung eingesetzt, die unterhalb des Nanometerbereichs liegt. Zugleich kann die Messung Zeiträume bis hin zu Mikrosekunden sichtbar machen. „Sowohl verfälschende Einflüsse der Umgebung als auch Fehler, die durch einen starken Laserstrahl ausgelöst werden könnten, müssen ausgeschlossen bleiben“, umreißt die Projektleiterin Dr. Sylvia Jeney die größte Schwierigkeit im Aufbau solcher Experimente. „Dann kann das Teilchen einen Report über die thermischen Kräfte liefern, die in der Flüssigkeit wirken.“ Ist das aber angesichts der Größenverhältnisse nicht so, als würde ein Schwarm Kaulquappen versuchen, ein Nilpferd im Schlamm herumzuschubsen? „So dickhäutig ist der Partikel nicht, dass er die Stöße der Flüssigkeitsteilchen nicht registriert“, versichert Thomas Franosch. Hier kommt das sogenannte Hydrodynamische Gedächtnis ins Spiel, das das Schwimmen von Teilchen in einem Lösungsmittel verzögert. Wer Milch im Kaffee bevorzugt, kennt den Effekt: Die Zugabe verteilt sich von selbst nur langsam, darum liegt der Löffel zum Umrühren neben der Tasse.

Möglicherweise wird das Hydrodynamische Gedächtnis auf der Grundlage der Ergebnisse des Forscherteams für völlig neuartige Messverfahren nutzbar. Als Kernstück nanomechanischer Sensoren könnten von Lasern eingefangene Teilchen in Werkstoffwissenschaften oder Biomedizin Dienst tun, zum Beispiel als Kundschafter im Blut.

1) doi:10.1038/nature10498

Weitere Informationen

Prof. Dr. Thomas Franosch
Tel.: 09131/85-28449
thomas.franosch@physik.uni-erlangen.de

Pascale Anja Dannenberg | idw
Weitere Informationen:
http://www.uni-erlangen.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Heiß & kalt – Gegensätze ziehen sich an
25.04.2017 | Universität Wien

nachricht Astronomen-Team findet Himmelskörper mit „Schmauchspuren“
25.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: TU Chemnitz präsentiert weltweit einzigartige Pilotanlage für nachhaltigen Leichtbau

Wickelprinzip umgekehrt: Orbitalwickeltechnologie soll neue Maßstäbe in der großserientauglichen Fertigung komplexer Strukturbauteile setzen

Mitarbeiterinnen und Mitarbeiter des Bundesexzellenzclusters „Technologiefusion für multifunktionale Leichtbaustrukturen" (MERGE) und des Instituts für...

Im Focus: Smart Wireless Solutions: EU-Großprojekt „DEWI“ liefert Innovationen für eine drahtlose Zukunft

58 europäische Industrie- und Forschungspartner aus 11 Ländern forschten unter der Leitung des VIRTUAL VEHICLE drei Jahre lang, um Europas führende Position im Bereich Embedded Systems und dem Internet of Things zu stärken. Die Ergebnisse von DEWI (Dependable Embedded Wireless Infrastructure) wurden heute in Graz präsentiert. Zu sehen war eine Fülle verschiedenster Anwendungen drahtloser Sensornetzwerke und drahtloser Kommunikation – von einer Forschungsrakete über Demonstratoren zur Gebäude-, Fahrzeug- oder Eisenbahntechnik bis hin zu einem voll vernetzten LKW.

Was vor wenigen Jahren noch nach Science-Fiction geklungen hätte, ist in seinem Ansatz bereits Wirklichkeit und wird in Zukunft selbstverständlicher Teil...

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationaler Tag der Immunologie - 29. April 2017

28.04.2017 | Veranstaltungen

Kampf gegen multiresistente Tuberkulose – InfectoGnostics trifft MYCO-NET²-Partner in Peru

28.04.2017 | Veranstaltungen

123. Internistenkongress: Traumata, Sprachbarrieren, Infektionen und Bürokratie – Herausforderungen

27.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Über zwei Millionen für bessere Bordnetze

28.04.2017 | Förderungen Preise

Symbiose-Bakterien: Vom blinden Passagier zum Leibwächter des Wollkäfers

28.04.2017 | Biowissenschaften Chemie

Wie Pflanzen ihre Zucker leitenden Gewebe bilden

28.04.2017 | Biowissenschaften Chemie