Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kugelsternhaufen - Die Überlebenden eines Massakers vor 13 Milliarden Jahren

14.02.2012
Rund um unsere Milchstraße befinden sich etwa 200 kompakte Sterngruppen, die aus je bis zu einer Million Sternen bestehen.

Mit einem Alter von 13 Milliarden Jahren sind diese Kugelsternhaufen fast so alt wie das Universum selbst und enthalten wertvolle Informationen, wie sich die ersten Sterne und Galaxien gebildet haben.

Ein Astronomenteam aus Deutschland und den Niederlanden hat nun ihre Geburt neu am Computer simuliert. Dabei fanden die Wissenschaftler heraus, dass diese riesigen Sternhaufen die einzigen Überlebenden eines Massakers vor 13 Milliarden Jahren sind, das die meisten ihrer kleineren Geschwister zerstört hat. Diese Ergebnisse, die unter der Leitung von Dr. Diederik Kruijssen am Max-Planck-Institut für Astrophysik in Garching entstanden sind, werden in der Fachzeitschrift Monthly Notices of the Royal Astronomical Society veröffentlicht.

Kugelsternhaufen haben eine bemerkenswerte Eigenschaft: die typische Sternzahl in diesen Haufen scheint im ganzen Universum etwa gleich zu sein. Ganz im Gegensatz zu viel jüngeren Sternhaufen, die nahezu eine beliebige Anzahl von Sternen enthalten können, von weniger als 100 bis zu vielen Tausend. Die Wissenschaftler erklären diesen Unterschied nun durch die Bedingungen, unter denen sich Kugelsternhaufen früh in der Entwicklung ihrer Galaxien gebildet haben.

Die Forscher führten Simulationen von isolierten und kollidierenden Galaxien durch, in denen auch ein Modell für die Entstehung und Zerstörung von Sternhaufen enthalten war. Bei einer Galaxienkollision gibt es oft spektakuläre Aktivitäten der Sternentstehung ("Starburst") und es entsteht eine Fülle von hellen, jungen Sternhaufen in ganz unterschiedlichen Größen. Deshalb dachte man, dass sich die Gesamtzahl der Sternhaufen während eines Starbursts erhöht. Das deutsch-niederländische Team fand nun aber mit seinen Simulationen heraus, dass genau das Gegenteil der Fall ist.

Während die hellsten und größten Haufen aufgrund ihrer eigenen Anziehungskraft tatsächlich in der Lage sind eine Galaxienkollision zu überleben, werden die zahlreichen kleineren Haufen durch die sich rasch ändernden Gravitationskräfte bei Starbursts mit Gas, Staub und Sternen in konstanter Bewegung zerstört. Diese Phase des Starbursts fand nach etwa zwei Milliarden Jahren ein Ende und die Forscher waren überrascht zu sehen, dass nur Haufen mit einer hohen Sternzahl überlebt hatten. Die Eigenschaften dieser Haufen waren außerdem genau jene, die man für junge Kugelsternhaufen vor etwa 11 Milliarden Jahren erwarten würde.

Dr. Kruijssen kommentiert: "Es ist wirklich eine Ironie des Schicksals zu sehen, dass Starbursts zum einen viele junge Sternhaufen entstehen lassen, die Mehrheit von ihnen aber gleichzeitig auch wieder zerstören. Dies passiert nicht nur in Galaxienkollisionen, sondern ist bei jedem Starburst zu erwarten. Im frühen Universum waren Starbursts an der Tagesordnung - es macht daher absolut Sinn, dass alle Kugelsternhaufen in etwa die gleiche große Anzahl von Sternen haben. Ihre kleineren Brüder und Schwestern, die nicht so viele Sterne enthielten, waren dazu verdammt zerstört zu werden."

In den Simulationen werden die meisten Sternhaufen schon kurz nach ihrer Entstehung zerstört, im lebensfeindlichen Umfeld der jungen Galaxie. Nach dem Ende dieses Abschnitts leben die übrig gebliebenen Kugelsternhaufen ruhig bis zum heutigen Tag weiter.

Um ihre Ideen zu testen, schlagen die Forscher neue Beobachtungen vor. Dr. Kruijssen erklärt: "In unserer kosmischen Nachbarschaft gibt es mehrere Galaxien, die vor kurzem große Ausbrüche von Sternentstehung durchlaufen haben. Es sollte daher möglich sein, die schnelle Zerstörung der kleineren Sternhaufen direkt in Aktion zu sehen. Sollte man dies bei den neuen Beobachtungen tatsächlich finden, so ist unsere Theorie für die Entstehung der Kugelsternhaufen bestätigt."

Den Simulationen zu Folge werden die meisten Eigenschaften der Kugelsternhaufen durch die Bedingungen bei ihrer Entstehung festgelegt. Die Tatsache, dass Kugelsternhaufen heute alle sehr ähnlich sind, deutet damit darauf hin, dass sie sich in der gleichen Umgebung (wenn auch in unterschiedlichen Galaxien) gebildet haben. In diesem Fall können sie laut Dr. Kruijssen wie fossile Zeitzeugen eingesetzt werden, um mehr über die Bedingungen zu erfahren, unter denen einst die ersten Sterne und Galaxien geboren wurden.

SCIENCE KONTAKT

Dr. Diederik Kruijssen
Max-Planck-Institut für Astrophysik
Garching, Deutschland
Tel.: +49 (0) 89 30000 2241
E-Mail: kruijssen@mpa-garching.mpg.de
MEDIA CONTACT
Dr. Robert Massey
Royal Astronomical Society
Tel.: +44 (0) 20 7734 3307 x214
E-Mail: rm@ras.org.uk
Dr. Hannelore Hämmerle
Pressesprecher
Max-Planck-Institut für Astrophysik
Garching, Deutschland
Tel.: +49 (0) 89 30000 3980
E-Mail: pr@mpa-garching.mpg.de
Originalveröffentlichung:
"Formation versus destruction: the evolution of the star cluster population in galaxy mergers", Kruijssen et al, Monthly Notices of the Royal Astronomical Society, im Druck.

http://arxiv.org/abs/1112.1065

Dr. Hannelore Hämmerle | Max-Planck-Institut
Weitere Informationen:
http://www.mpa-garching.mpg.de
http://www.mpa-garching.mpg.de/mpa/institute/news_archives/news1202_aaa/news1202_aaa-en.html

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Proteintransport - Stau in der Zelle
24.03.2017 | Ludwig-Maximilians-Universität München

nachricht Neuartige Halbleiter-Membran-Laser
22.03.2017 | Universität Stuttgart

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise