Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kürzeste Lichtblitze aus ultraheißer Materie

06.10.2009
Hochenergetische Schwerionenstöße, wie sie am RHIC in Brookhaven oder demnächst auch am LHC in Genf untersucht werden, können eine Quelle für Lichtblitze von einigen Yoktosekunden (Quadrillionstel Sekunden, 10-24 s, ys) Dauer sein - so lange wie das Licht benötigt, um einen Atomkern zu durchqueren.

Das zeigen Berechnungen der Lichtemission sogenannter Quark-Gluon-Plasmen, die in derartigen Stößen für extrem kurze Zeitspannen entstehen. Unter bestimmten Umständen werden Doppelpulse erzeugt, mit denen eines Tages die Dynamik von Atomkernen "sichtbar" gemacht werden könnte. (Physical Review Letters, 07.10.2009)


Kollision von Schwerionen in einer großen Beschleunigeranlage (schematisch), bei der unter bestimmten Bedingungen Doppelblitze von einigen Yoktosekunden Dauer abgestrahlt werden. MPI für Kernphysik


Zeitliche Entwicklung des Quark-Gluon-Plasmas. Die beiden als farbige Scheiben dargestellten Ionen kollidieren entlang der Stoßachse (schwarzer Doppelpfeil). Bild (a) zeigt den Zeitpunkt unmittelbar nach der Kollision. Das Plasma (oranger Bereich) strahlt durch gewellte Pfeile angedeutetes Licht in alle Richtungen aus, so dass ein erster Puls in Richtung des Detektors (grüner Halbkreis) entsteht. (b) Nach einiger Zeit bewirkt die innere Dynamik des Plasmas, dass das Licht bevorzugt senkrecht zur Flugrichtung der Ionen abgestrahlt wird. In Richtung des Detektors, der dicht bei der Stoßachse aufgestellt ist, wird in dieser Zeit kein Licht ausgesandt. In (c) strahlt das Plasma wieder in alle Richtungen, so dass der zweite Puls in Richtung des Detektors emittiert wird. MPI für Kernphysik

Für hochpräzise Spektroskopie oder Strukturuntersuchungen von Molekülen werden möglichst kurze Lichtblitze mit möglichst niedriger Wellenlänge, also hoher Photonenenergie benötigt. Derzeit sind Röntgenblitze von einigen Attosekunden (Trillionstel Sekunden, 10-18 s) Dauer experimentell erreichbar.

Noch kürzere Pulse mit noch höherer Photonenenergie würden die zeitliche und räumliche Auflösung verbessern, oder gar die Untersuchung von noch kleineren Strukturen wie z.B. Atomkernen ermöglichen. In sogenannten Pump-Probe-Experimenten werden mit zwei in genau steuerbarem Abstand aufeinander folgenden Pulsen schnelle Bewegungen wie in Zeitlupe beobachtet. Der erste Puls regt dabei das untersuchte System an, während der zweite Puls die Zeitentwicklung seit dem ersten Puls abfragt.

Berechnungen am Max-Planck-Institut für Kernphysik zeigen nun, dass hochenergetische Schwerionenstöße in großen Teilchenbeschleunigern als Lichtquellen für die gewünschten Einfach- und Doppelpulse geeignet sind. Das ist auf die bemerkenswerten Eigenschaften eines Quark-Gluon-Plasmas zurückzuführen. Das Quark-Gluon-Plasma gilt als der Zustand der Materie, aus dem das Universum unmittelbar nach dem Urknall bestand. Darin sind die Temperaturen so hoch, dass selbst die Bausteine der Atomkerne, die Neutronen und Protonen, in ihre Bestandteile, die Quarks, aufgebrochen werden. Ein solcher Materiezustand kann heute in modernen Beschleunigeranlagen realisiert werden.

In der Kollision von Schwerionen - also Atomen schwerer Elemente, denen Elektronen entfernt wurden - bei relativistischen Geschwindigkeiten entsteht für einige Yoktosekunden ein solches Quark-Gluon-Plasma in Atomkerngröße (Abbildung 1). Es erzeugt neben vielerlei anderen Teilchen auch Photonen mit einigen GeV (Milliarden Elektronenvolt) Energie, sogenannte Gammastrahlung. Diese hochenergetischen Lichtblitze sind so kurz wie die Lebensdauer des Quark-Gluon-Plasmas und bestehen aus nur wenigen Photonen.

Die Forscher haben nun die Expansion und innere Dynamik des Quark-Gluon-Plasmas in ihrem zeitlichen Verlauf simuliert. Es zeigte sich, dass die Photonen zwischendurch nicht in alle Richtungen, sondern bevorzugt senkrecht zur Stoßrichtung abgestrahlt werden. Blickt ein Detektor nahezu entlang der Stoßachse, empfängt er deshalb in diesem Zeitraum praktisch nichts, sieht also insgesamt einen Doppelpuls (Abbildung 2). Durch geeignete Wahl von Stoßgeometrie und Beobachtungsrichtung sind die Doppelpulse im Prinzip gezielt variierbar. Somit eröffnen sie die Möglichkeit von zukünftigen Pump-Probe-Experimenten im Yoktosekundenbereich bei hohen Energien. Dies könnte zu einer zeitaufgelösten Beobachtung von Kernprozessen führen. Umgekehrt würde eine genaue Analyse der Gammablitze Rückschlüsse auf das Quark-Gluon-Plasma ermöglichen.

Kontakt:

PD Dr. Jörg Evers
Max-Planck-Institut für Kernphysik, Heidelberg
Tel: +49-6221-516-177
E-Mail: joerg.evers@mpi-hd.mpg.de
Prof. Dr. Christoph H. Keitel
Max-Planck-Institut für Kernphysik, Heidelberg
Tel: +49-6221-516-150
E-Mail: christoph.keitel@mpi-hd.mpg.de

Dr. Bernold Feuerstein | Max-Planck-Gesellschaft
Weitere Informationen:
http://link.aps.org/doi/10.1103/PhysRevLett.103.152301
http://www.mpi-hd.mpg.de/keitel/
http://www.mpi-hd.mpg.de/keitel/evers/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Bilder magnetischer Strukturen auf der Nano-Skala
20.04.2018 | Georg-August-Universität Göttingen

nachricht Licht macht Ionen Beine
20.04.2018 | Max-Planck-Institut für Festkörperforschung, Stuttgart

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Software mit Grips

Ein computergestütztes Netzwerk zeigt, wie die Ionenkanäle in der Membran von Nervenzellen so verschiedenartige Fähigkeiten wie Kurzzeitgedächtnis und Hirnwellen steuern können

Nervenzellen, die auch dann aktiv sind, wenn der auslösende Reiz verstummt ist, sind die Grundlage für ein Kurzzeitgedächtnis. Durch rhythmisch aktive...

Im Focus: Der komplette Zellatlas und Stammbaum eines unsterblichen Plattwurms

Von einer einzigen Stammzelle zur Vielzahl hochdifferenzierter Körperzellen: Den vollständigen Stammbaum eines ausgewachsenen Organismus haben Wissenschaftlerinnen und Wissenschaftler aus Berlin und München in „Science“ publiziert. Entscheidend war der kombinierte Einsatz von RNA- und computerbasierten Technologien.

Wie werden aus einheitlichen Stammzellen komplexe Körperzellen mit sehr unterschiedlichen Funktionen? Die Differenzierung von Stammzellen in verschiedenste...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Grösster Elektrolaster der Welt nimmt Arbeit auf

20.04.2018 | Interdisziplinäre Forschung

Bilder magnetischer Strukturen auf der Nano-Skala

20.04.2018 | Physik Astronomie

Kieler Forschende entschlüsseln neuen Baustein in der Entwicklung des globalen Klimas

20.04.2018 | Geowissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics