Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Künstliche Photosynthese

13.07.2015

An der TU Wien wurden Quanteneffekte untersucht, die bei der Photosynthese wichtig sind. Wie sich zeigt, spielen molekulare Vibrationen eine zentrale Rolle.

Die Natur ist nicht dumm. Mit beeindruckender Effizienz können Pflanzen oder Bakterien das Licht der Sonne für die Photosynthese nutzbar machen. Seit Jahren wird diskutiert, ob Quanteneffekte für diese Effizienz verantwortlich sind.


Die untersuchten makromolekularen Aggregate – 15 nm im Durchmesser, bis zu hunderte Mikrometer lang

TU Wien

Man beobachtete nämlich, dass Moleküle bei der Photosynthese erstaunlich lange in einem Zustand verweilen können, den man nur quantenphysikalisch verstehen kann. Anhand eines Modellsystems wurde dieser Effekt an der TU Wien nun untersucht. Dabei zeigte sich: Die heiß diskutierten langlebigen Quantenzustände sind ein Nebenprodukt eines anderen Phänomens. Die Kopplung zwischen Vibrationen und Elektronen der Moleküle stellt sich als entscheidend heraus, dieser Effekt erklärt die Messungen nun vollständig.

Warm, feucht und wirr

Ein biologisches System wie eine lebende Zelle ist eigentlich kein gutes Quantenlabor. „Zellen sind warm, nass und unordentlich. Genau so eine Umgebung will man normalerweise vermeiden, wenn man Quantenexperimente durchführt“, erklärt Jürgen Hauer vom Institut für Photonik der TU Wien. Man stellte fest, dass das Verhalten bestimmter Molekülverbände, wie sie auch bei der Photosynthese eine entscheidende Rolle spielen, nur quantenphysikalisch erklärbar ist.

„Das Licht regt die Molekülverbände an und bringt sie auf ein höheres Energieniveau“, sagt Jürgen Hauer. „Quantenphysikalisch ist es möglich, dass sie zwei verschiedene Energien gleichzeitig annehmen.“ Solche Überlagerungen werden normalerweise sehr rasch zerstört, die klassische Physik erlaubt nur eindeutige Werte für die Energie, keine Überlagerung zweier Werte.

Bei der Photosynthese (bei Raumtemperatur) überleben diese Quanten-Zustände aber für die Dauer von hunderten Femtosekunden bei Raumtemperatur. Das ist für alltägliche Maßstäbe zwar bloß ein winziger Augenblick, auf quantenphysikalischen Zeitskalen ist das aber erstaunlich lange.

„Dadurch drängte sich natürlich die Frage auf, ob diese erstaunlich lang anhaltende Quanten-Kohärenz für die Effizienz der Photosynthese notwendig ist“, sagt Jürgen Hauer. Er selbst war davon nicht überzeugt: „Unser Tageslicht ist kein Quanten-Licht, die Sonne ist kein Laser“, erklärt Hauer. „Es ist daher nicht wirklich nachvollziehbar, warum quantenphysikalische Kohärenz nötig sein soll um das Licht optimal zu nutzen.“

Das Vibrieren der Moleküle

Chlorophylle oder andere Moleküle, die das Sonnenlicht umwandeln können, sind nicht zufällig verteilt, sondern finden sich zu Gruppen zusammen. Dadurch ist es möglich, dass diese Moleküle gegeneinander vibrieren. In den Photonik-Labors der TU Wien wurde das mit einem Modellsystem untersucht. Um dem Mechanismus genau auf die Spur zu kommen, analysierte man keine lebenden Zellen, sondern ein ähnliches, künstlich hergestelltes und geordnetes System aus Cyaninfarbstoff-Molekülen.

Dabei zeigte sich, dass Vibrationen eine ganz entscheidende Rolle spielen. „Die Vibrationen koppeln verschiedene Energiezustände miteinander, man spricht von vibronischen Anregungen – Vibration und elektronische Zustände gehören untrennbar zusammen, sie werden ununterscheidbar“, sagt Jürgen Hauer.

Diese vibronische Kopplung ermöglicht den schnellen und nahezu verlustfreien Transfer der Lichtenergie in Lichtsammelkomplexen. Diese Molekülverbände werden durch das Licht zunächst angeregt und in einen Zustand hoher Energie gebracht. Ähnlich wie ein Ball auf einer Treppe von Stufe zu Stufe nach unten fällt, muss die Energie Schritt für Schritt verringert werden, um in der Zelle genutzt werden zu können. Beim wichtigen ersten Schritt dieser Energie-Kaskade spielen die Vibrationen ihre entscheidende Rolle.

Lernen von der Natur

Jürgen Hauer, der 2012 für seine Arbeit mit einem START-Preis des FWF ausgezeichnet wurde, möchte mit seinen Experimenten die Tricks der Natur nutzbar machen. Biologische Zellen sind in den ersten Schritten der Verarbeitung von Lichtenergie deutlich effizienter als künstliche Solarzellen: neun von zehn Photonen werden in Bio-Systemen in elektrochemische Energie umgewandelt.

In den später ablaufenden Schritten sinkt zwar die Effizienz, doch auch das hat seinen Sinn: Die Zelle gewinnt dadurch an Flexibilität und kann bei ganz unterschiedlichen Lichtverhältnissen überleben. Ein besseres Verständnis der natürlichen Photosynthese soll dazu führen, dass künftige Generationen von Solarzellen ähnlich gute Eigenschaften haben wie die biologischen Kraftwerke der Zelle, die von der Evolution über Milliarden Jahre optimiert worden sind.

Die Veröffentlichung in Nature Communications ist das Produkt einer Kooperation zwischen sechs europäischen Forschungsgruppen aus Wien, Prag, Ulm, Lund, Berlin und Cartagena (Spanien).

Weitere Informationen:

Originalpublikation: „Vibronic origin of long-lived coherence in an artificial molecular light harvester”: http://www.nature.com/ncomms/2015/150709/ncomms8755/full/ncomms8755.html
Bilderdownload: http://www.tuwien.ac.at/dle/pr/aktuelles/downloads/2015/photosynthese

Dr. Florian Aigner | Technische Universität Wien

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Der überraschend schnelle Fall des Felix Baumgartner
14.12.2017 | Technische Universität München

nachricht Eine blühende Sternentstehungsregion
14.12.2017 | ESO Science Outreach Network - Haus der Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Immunsystem - Blutplättchen können mehr als bislang bekannt

LMU-Mediziner zeigen eine wichtige Funktion von Blutplättchen auf: Sie bewegen sich aktiv und interagieren mit Erregern.

Die aktive Rolle von Blutplättchen bei der Immunabwehr wurde bislang unterschätzt: Sie übernehmen mehr Funktionen als bekannt war. Das zeigt eine Studie von...

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Nanostrukturen steuern Wärmetransport: Bayreuther Forscher entdecken Verfahren zur Wärmeregulierung

Der Forschergruppe von Prof. Dr. Markus Retsch an der Universität Bayreuth ist es erstmals gelungen, die von der Temperatur abhängige Wärmeleitfähigkeit mit Hilfe von polymeren Materialien präzise zu steuern. In der Zeitschrift Science Advances werden diese fortschrittlichen, zunächst für Laboruntersuchungen hergestellten Funktionsmaterialien beschrieben. Die hiermit gewonnenen Erkenntnisse sind von großer Relevanz für die Entwicklung neuer Konzepte zur Wärmedämmung.

Von Schmetterlingsflügeln zu neuen Funktionsmaterialien

Im Focus: Lange Speicherung photonischer Quantenbits für globale Teleportation

Wissenschaftler am Max-Planck-Institut für Quantenoptik erreichen mit neuer Speichertechnik für photonische Quantenbits Kohärenzzeiten, welche die weltweite...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Call for Contributions: Tagung „Lehren und Lernen mit digitalen Medien“

15.12.2017 | Veranstaltungen

Die Stadt der Zukunft nachhaltig(er) gestalten: inter 3 stellt Projekte auf Konferenz vor

15.12.2017 | Veranstaltungen

Mit allen Sinnen! - Sensoren im Automobil

14.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Weltrekord: Jülicher Forscher simulieren Quantencomputer mit 46 Qubits

15.12.2017 | Informationstechnologie

Wackelpudding mit Gedächtnis – Verlaufsvorhersage für handelsübliche Lacke

15.12.2017 | Verfahrenstechnologie

Forscher vereinfachen Installation und Programmierung von Robotersystemen

15.12.2017 | Energie und Elektrotechnik