Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Künstliche Photosynthese

13.07.2015

An der TU Wien wurden Quanteneffekte untersucht, die bei der Photosynthese wichtig sind. Wie sich zeigt, spielen molekulare Vibrationen eine zentrale Rolle.

Die Natur ist nicht dumm. Mit beeindruckender Effizienz können Pflanzen oder Bakterien das Licht der Sonne für die Photosynthese nutzbar machen. Seit Jahren wird diskutiert, ob Quanteneffekte für diese Effizienz verantwortlich sind.


Die untersuchten makromolekularen Aggregate – 15 nm im Durchmesser, bis zu hunderte Mikrometer lang

TU Wien

Man beobachtete nämlich, dass Moleküle bei der Photosynthese erstaunlich lange in einem Zustand verweilen können, den man nur quantenphysikalisch verstehen kann. Anhand eines Modellsystems wurde dieser Effekt an der TU Wien nun untersucht. Dabei zeigte sich: Die heiß diskutierten langlebigen Quantenzustände sind ein Nebenprodukt eines anderen Phänomens. Die Kopplung zwischen Vibrationen und Elektronen der Moleküle stellt sich als entscheidend heraus, dieser Effekt erklärt die Messungen nun vollständig.

Warm, feucht und wirr

Ein biologisches System wie eine lebende Zelle ist eigentlich kein gutes Quantenlabor. „Zellen sind warm, nass und unordentlich. Genau so eine Umgebung will man normalerweise vermeiden, wenn man Quantenexperimente durchführt“, erklärt Jürgen Hauer vom Institut für Photonik der TU Wien. Man stellte fest, dass das Verhalten bestimmter Molekülverbände, wie sie auch bei der Photosynthese eine entscheidende Rolle spielen, nur quantenphysikalisch erklärbar ist.

„Das Licht regt die Molekülverbände an und bringt sie auf ein höheres Energieniveau“, sagt Jürgen Hauer. „Quantenphysikalisch ist es möglich, dass sie zwei verschiedene Energien gleichzeitig annehmen.“ Solche Überlagerungen werden normalerweise sehr rasch zerstört, die klassische Physik erlaubt nur eindeutige Werte für die Energie, keine Überlagerung zweier Werte.

Bei der Photosynthese (bei Raumtemperatur) überleben diese Quanten-Zustände aber für die Dauer von hunderten Femtosekunden bei Raumtemperatur. Das ist für alltägliche Maßstäbe zwar bloß ein winziger Augenblick, auf quantenphysikalischen Zeitskalen ist das aber erstaunlich lange.

„Dadurch drängte sich natürlich die Frage auf, ob diese erstaunlich lang anhaltende Quanten-Kohärenz für die Effizienz der Photosynthese notwendig ist“, sagt Jürgen Hauer. Er selbst war davon nicht überzeugt: „Unser Tageslicht ist kein Quanten-Licht, die Sonne ist kein Laser“, erklärt Hauer. „Es ist daher nicht wirklich nachvollziehbar, warum quantenphysikalische Kohärenz nötig sein soll um das Licht optimal zu nutzen.“

Das Vibrieren der Moleküle

Chlorophylle oder andere Moleküle, die das Sonnenlicht umwandeln können, sind nicht zufällig verteilt, sondern finden sich zu Gruppen zusammen. Dadurch ist es möglich, dass diese Moleküle gegeneinander vibrieren. In den Photonik-Labors der TU Wien wurde das mit einem Modellsystem untersucht. Um dem Mechanismus genau auf die Spur zu kommen, analysierte man keine lebenden Zellen, sondern ein ähnliches, künstlich hergestelltes und geordnetes System aus Cyaninfarbstoff-Molekülen.

Dabei zeigte sich, dass Vibrationen eine ganz entscheidende Rolle spielen. „Die Vibrationen koppeln verschiedene Energiezustände miteinander, man spricht von vibronischen Anregungen – Vibration und elektronische Zustände gehören untrennbar zusammen, sie werden ununterscheidbar“, sagt Jürgen Hauer.

Diese vibronische Kopplung ermöglicht den schnellen und nahezu verlustfreien Transfer der Lichtenergie in Lichtsammelkomplexen. Diese Molekülverbände werden durch das Licht zunächst angeregt und in einen Zustand hoher Energie gebracht. Ähnlich wie ein Ball auf einer Treppe von Stufe zu Stufe nach unten fällt, muss die Energie Schritt für Schritt verringert werden, um in der Zelle genutzt werden zu können. Beim wichtigen ersten Schritt dieser Energie-Kaskade spielen die Vibrationen ihre entscheidende Rolle.

Lernen von der Natur

Jürgen Hauer, der 2012 für seine Arbeit mit einem START-Preis des FWF ausgezeichnet wurde, möchte mit seinen Experimenten die Tricks der Natur nutzbar machen. Biologische Zellen sind in den ersten Schritten der Verarbeitung von Lichtenergie deutlich effizienter als künstliche Solarzellen: neun von zehn Photonen werden in Bio-Systemen in elektrochemische Energie umgewandelt.

In den später ablaufenden Schritten sinkt zwar die Effizienz, doch auch das hat seinen Sinn: Die Zelle gewinnt dadurch an Flexibilität und kann bei ganz unterschiedlichen Lichtverhältnissen überleben. Ein besseres Verständnis der natürlichen Photosynthese soll dazu führen, dass künftige Generationen von Solarzellen ähnlich gute Eigenschaften haben wie die biologischen Kraftwerke der Zelle, die von der Evolution über Milliarden Jahre optimiert worden sind.

Die Veröffentlichung in Nature Communications ist das Produkt einer Kooperation zwischen sechs europäischen Forschungsgruppen aus Wien, Prag, Ulm, Lund, Berlin und Cartagena (Spanien).

Weitere Informationen:

Originalpublikation: „Vibronic origin of long-lived coherence in an artificial molecular light harvester”: http://www.nature.com/ncomms/2015/150709/ncomms8755/full/ncomms8755.html
Bilderdownload: http://www.tuwien.ac.at/dle/pr/aktuelles/downloads/2015/photosynthese

Dr. Florian Aigner | Technische Universität Wien

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Ultra-sensitiv dank quantenmechanischer Verschränkung
28.06.2017 | Universität Stuttgart

nachricht Forscher sorgen mit ungewöhnlicher Studie über Edelgase international für Aufmerksamkeit
26.06.2017 | Universität Bremen

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Schnelles und umweltschonendes Laserstrukturieren von Werkzeugen zur Folienherstellung

Kosteneffizienz und hohe Produktivität ohne dabei die Umwelt zu belasten: Im EU-Projekt »PoLaRoll« entwickelt das Fraunhofer-Institut für Produktionstechnologie IPT aus Aachen gemeinsam mit dem Oberhausener Fraunhofer-Institut für Umwelt-, Sicherheit- und Energietechnik UMSICHT und sechs Industriepartnern ein Modul zur direkten Laser-Mikrostrukturierung in einem Rolle-zu-Rolle-Verfahren. Ziel ist es, mit Hilfe dieses Systems eine siebartige Metallfolie als Demonstrator zu fertigen, die zum Sonnenschutz von Glasfassaden verwendet wird: Durch ihre besondere Geometrie wird die Sonneneinstrahlung reduziert, woraus sich ein verminderter Energieaufwand für Kühlung und Belüftung ergibt.

Das Fraunhofer IPT ist im Projekt »PoLaRoll« für die Prozessentwicklung der Laserstrukturierung sowie für die Mess- und Systemtechnik zuständig. Von den...

Im Focus: Das Auto lernt vorauszudenken

Ein neues Christian Doppler Labor an der TU Wien beschäftigt sich mit der Regelung und Überwachung von Antriebssystemen – mit Unterstützung des Wissenschaftsministeriums und von AVL List.

Wer ein Auto fährt, trifft ständig Entscheidungen: Man gibt Gas, bremst und dreht am Lenkrad. Doch zusätzlich muss auch das Fahrzeug selbst ununterbrochen...

Im Focus: Vorbild Delfinhaut: Elastisches Material vermindert Reibungswiderstand bei Schiffen

Für eine elegante und ökonomische Fortbewegung im Wasser geben Delfine den Wissenschaftlern ein exzellentes Vorbild. Die flinken Säuger erzielen erstaunliche Schwimmleistungen, deren Ursachen einerseits in der Körperform und andererseits in den elastischen Eigenschaften ihrer Haut zu finden sind. Letzteres Phänomen ist bereits seit Mitte des vorigen Jahrhunderts bekannt, konnte aber bislang nicht erfolgreich auf technische Anwendungen übertragen werden. Experten des Fraunhofer IFAM und der HSVA GmbH haben nun gemeinsam mit zwei weiteren Forschungspartnern eine Oberflächenbeschichtung entwickelt, die ähnlich wie die Delfinhaut den Strömungswiderstand im Wasser messbar verringert.

Delfine haben eine glatte Haut mit einer darunter liegenden dicken, nachgiebigen Speckschicht. Diese speziellen Hauteigenschaften führen zu einer signifikanten...

Im Focus: Kaltes Wasser: Und es bewegt sich doch!

Bei minus 150 Grad Celsius flüssiges Wasser beobachten, das beherrschen Chemiker der Universität Innsbruck. Nun haben sie gemeinsam mit Forschern in Schweden und Deutschland experimentell nachgewiesen, dass zwei unterschiedliche Formen von Wasser existieren, die sich in Struktur und Dichte stark unterscheiden.

Die Wissenschaft sucht seit langem nach dem Grund, warum ausgerechnet Wasser das Molekül des Lebens ist. Mit ausgefeilten Techniken gelingt es Forschern am...

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Marine Pilze – hervorragende Quellen für neue marine Wirkstoffe?

28.06.2017 | Veranstaltungen

Willkommen an Bord!

28.06.2017 | Veranstaltungen

Internationale Fachkonferenz IEEE ICDCM - Lokale Gleichstromnetze bereichern die Energieversorgung

27.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

EUROSTARS-Projekt gestartet - mHealth-Lösung: time4you Forschungs- und Entwicklungspartner bei IMPACHS

28.06.2017 | Unternehmensmeldung

Proteine entdecken, zählen, katalogisieren

28.06.2017 | Biowissenschaften Chemie

Neue Scheinwerfer-Dimension: Volladaptive Lichtverteilung in Echtzeit

28.06.2017 | Automotive