Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Künstliche magnetische Monopole entdeckt

31.05.2013
Einem Team aus Kölner, Münchener und Dresdner Forschern ist es gelungen, künstliche magnetische Monopole zu erzeugen.

Dazu verschmolzen die Wissenschaftler winzige magnetische Wirbel, sogenannte Skyrmionen. Am Verschmelzungspunkt konnten die Physiker einen Monopol nachweisen, das ähnliche Eigenschaften hat, wie ein 1931 von Paul Dirac postuliertes Elementarteilchen.

Neben der Grundlagenforschung könnten die Monopole vielleicht auch Anwendungspotential haben. Weltweit wird an der Frage geforscht, ob man mit magnetischen Wirbeln vielleicht einmal Bauelemente für Computer herstellen kann.

Wenn man einen Magneten teilt, entstehen immer neue Magnete mit Nord- und Südpol. Aber ein Monopol, d.h. ein Nordpol ohne Südpol, oder ein Südpol ohne Nordpol wurde noch nicht entdeckt. In der heutigen Ausgabe der Zeitschrift Science beschreiben Forscher aus Dresden, München und Köln die Entdeckung einer neuen Art künstlicher Monopole in einem Festkörper, also von Teilchen, die ähnliche Eigenschaften wie Monopole haben, aber nur innerhalb des Materials existieren.

In den letzten Jahren wurden intensive Materialien untersucht, in denen sich magnetische Wirbel, sogenannte Skyrmionen, ausbilden. Diese Wirbel beeinflussen die Bewegung der Elektronen genau wie magnetische Felder. Deshalb benutzt man künstliche Magnetfelder, um diese Wirbel und die Kräfte auf die Elektronen zu beschreiben. Auch wenn das keine „echten“ Magnetfelder sind, kann man sie trotzdem genau wie normale Magnetfelder experimentell dadurch messen, dass sie Elektronen zur Seite hin ablenken. Die Forscher stellten sich die Frage was passiert, wenn man versucht, die magnetischen Wirbel zu zerstören. Dazu beobachtete die Gruppe um Prof. Eng von der Technischen Universität Dresden die magnetischen Wirbel mit einem magnetischen Kraftmikroskop: eine winzige magnetische Spitze tastet die Oberfläche des Magneten ab, bestimmt die Richtung der Magnetisierung und macht so die ca. 50 Nanometer großen magnetischen Wirbel sichtbar. Dabei wurde an der Oberfläche beobachtet, wie die Wirbel verschmelzen.
Aber was passiert im Inneren des Materials? Messungen mit Neutronen in der Gruppe von Prof. Pfleiderer in München legen nahe, dass dort ähnliche Prozesse ablaufen, aber einzelne Wirbel konnten so nicht beobachtet werden. Deshalb führten Stefan Buhrandt und Christoph Schütte in der Gruppe von Prof. Rosch an der Universität zu Köln Computersimulationen durch. Diese zeigten, dass der im Experiment an der Oberfläche beobachtete Verschmelzungsvorgang benachbarter Wirbel auch im Inneren stattfindet. Die Abbildung zeigt schematisch wie aus zwei magnetischen Wirbeln ein einziger entsteht.

Da jeder Wirbel ein künstliches Magnetfeld mit sich trägt, bedeutet das, dass am Verschmelzungspunkt Magnetfeld erzeugt oder vernichtet wird. „Das bedeutet, dass an dieser Stelle ein künstlicher magnetischer Monopol sitzen muss“, beschreibt Prof. Rosch, „wenn also im Experiment beobachtet wird, wie zwei magnetische Wirbel verschmelzen, dann ist gerade ein künstlicher magnetischer Monopol durch die Oberfläche geflogen“.

In der Teilchenphysik wird schon lange erfolglos nach magnetischen Monopolen gesucht. 1931 postulierte Paul Dirac ein solches Elementarteilchen, um zu erklären warum Elektron und Proton genau entgegengesetzte elektrische Ladungen tragen. Das ist überraschend, da die Bestandteile des Protons und das Elektron ganz unterschiedliche Elementarteilchen sind. Dirac aber argumentierte, dass die Existenz eines einzigen magnetischen Monopols schon ausreichen würde, um zu erklären, dass die Ladungen aller Elementarteilchen quantisiert sein muss, also genau ein ganzzahliges Vielfaches einer Elementarladung sein müssen. Die neu entdeckten künstlichen Monopole erfüllen genau diese Quantisierungsbedingung.

„Es ist faszinierend, dass etwas so Grundlegendes wie ein magnetischer Monopol in einem einfachen Material realisiert werden kann“, beschreibt Stefan Buhrandt. Trotzdem können die künstlichen Monopole nicht Diracs altes Rätsel lösen: nur die Elektronen im Festkörper, nicht aber die Protonen spüren die künstlichen Magnetfelder.

Neben der Grundlagenforschung könnten die Monopole vielleicht auch Anwendungspotential haben. Mehrere Gruppen weltweit forschen zurzeit an der Frage, ob man mit magnetischen Wirbeln vielleicht einmal Bauelemente für Computer herstellen kann. Wenn das gelingt, muss man die Wirbel auch erzeugen und vernichten: dabei können die magnetischen Monopole eine wichtige Rolle spielen.

Bei Rückfragen: Professor Dr. Achim Rosch
0221/470-4994
rosch@thp.uni-koeln.de

Gabriele Rutzen | idw
Weitere Informationen:
http://www.uni-koeln.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Bilder magnetischer Strukturen auf der Nano-Skala
20.04.2018 | Georg-August-Universität Göttingen

nachricht Licht macht Ionen Beine
20.04.2018 | Max-Planck-Institut für Festkörperforschung, Stuttgart

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Software mit Grips

Ein computergestütztes Netzwerk zeigt, wie die Ionenkanäle in der Membran von Nervenzellen so verschiedenartige Fähigkeiten wie Kurzzeitgedächtnis und Hirnwellen steuern können

Nervenzellen, die auch dann aktiv sind, wenn der auslösende Reiz verstummt ist, sind die Grundlage für ein Kurzzeitgedächtnis. Durch rhythmisch aktive...

Im Focus: Der komplette Zellatlas und Stammbaum eines unsterblichen Plattwurms

Von einer einzigen Stammzelle zur Vielzahl hochdifferenzierter Körperzellen: Den vollständigen Stammbaum eines ausgewachsenen Organismus haben Wissenschaftlerinnen und Wissenschaftler aus Berlin und München in „Science“ publiziert. Entscheidend war der kombinierte Einsatz von RNA- und computerbasierten Technologien.

Wie werden aus einheitlichen Stammzellen komplexe Körperzellen mit sehr unterschiedlichen Funktionen? Die Differenzierung von Stammzellen in verschiedenste...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Grösster Elektrolaster der Welt nimmt Arbeit auf

20.04.2018 | Interdisziplinäre Forschung

Bilder magnetischer Strukturen auf der Nano-Skala

20.04.2018 | Physik Astronomie

Kieler Forschende entschlüsseln neuen Baustein in der Entwicklung des globalen Klimas

20.04.2018 | Geowissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics