Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Künstliche Intelligenz ermöglicht die Entdeckung neuer Materialien

21.09.2016

Mit Methoden der künstlichen Intelligenz haben Chemiker der Universität Basel die Eigenschaften von rund 2 Millionen Kristallen berechnet, die aus vier verschiedenen chemischen Elementen zusammengesetzt sind. Dabei konnten die Forscher 90 bisher unbekannte Kristalle identifizieren, die thermodynamisch stabil sind und als neuartige Werkstoffe in Betracht kommen. Das berichten sie in der Fachzeitschrift «Physical Review Letters».

Elpasolith ist ein glasiges, transparentes, glänzendes und weiches Mineral mit kubischer Kristallstruktur. Erstmals entdeckt im El Paso County (USA), kann man es in den Rocky Mountains, in Virginia oder in den Apenninen finden.


Die Matrix visualisiert die Bildungsenergie – ein Indikator für die Stabilität – von rund zwei Millionen möglichen Verbindungen.

In experimentellen Datenbanken ist Elpasolith einer der häufigsten Kristalle, der aus vier verschiedenen chemischen Elementen besteht. Je nach ihrer Zusammensetzung können Elpasolithe metallische Leiter, Halbleiter oder Isolatoren sein, und manchmal können sie auch Licht emittieren, wenn sie Strahlung ausgesetzt werden.

Diese Eigenschaften machen Elpasolithe zu interessanten Materialkandidaten für Szintillatoren (mit denen sich etwa bestimmte Teilchen nachweisen lassen) und andere Anwendungen. Aufgrund ihrer chemischen Komplexität ist es rechnerisch nachgerade unmöglich, die Stabilität und Eigenschaften aller theoretisch denkbaren Kombinationen von vier Elementen in der Elpasolithstruktur quantenmechanisch vorherzusagen.

Statistische Analyse mithilfe von maschinellem Lernen

Dank modernen Methoden der künstlichen Intelligenz ist es Felix Faber, Doktorand in der Gruppe von Prof. von Lilienfeld am Departement der Chemie der Universität Basel, nun gelungen, dieses Materialdesign-Problem zu lösen. Dazu berechnete er zunächst die quantenmechanische Vorhersagen von Tausenden von Elpasolithkristallen mit zufällig ausgewählter chemischer Zusammensetzung.

Die Resultate nutzte er, um statistische, sogenannte Machine-Learning-Modelle (ML-Modelle), zu trainieren. Die so verbesserte algorithmische Herangehensweise erreichte eine prädiktive Genauigkeit, welche üblichen quantenmechanischen Näherungen entspricht.

Die ML-Modelle haben den Vorteil, dass sie um viele Grössenordnungen schneller sind als die entsprechenden quantenmechanischen Berechnungen. Innerhalb eines Tages konnte das ML-Modell die Bildungsenergien – ein Indikator für die chemische Stabilität – für alle 2 Millionen Elpasolithkristalle vorhersagen, die man aus allen Hauptgruppenelementen des Periodensystems der Elemente theoretisch erhalten kann. Für die entsprechenden quantenmechanischen Berechnungen hätte hingegen ein Hochleistungsrechner über 20 Millionen Rechenstunden verbraucht.

Unbekannte Materialien mit interessanten Eigenschaften

Die Analyse der berechneten Eigenschaften hat zu neuen Erkenntnissen über diese Materialklasse geführt. Die Forscher konnten fundamentale Bindungstrends aufdecken und unter den 2 Millionen Kristallen 90 bisher unbekannte Kristalle identifizieren, die gemäss quantenmechanischen Vorhersagen thermodynamisch stabil sind.

Aufgrund dieser potenziellen Eigenschaften wurden Elpasolithe in die Werkstoffdatenbank «Materials Project» aufgenommen, die eine zentrale Rolle innerhalb der Materials Genome Initiative spielt. Diese wurde 2011 von der US-amerikanischen Regierung lanciert, um mittels rechnerischer Unterstützung die Entdeckung und experimentelle Synthese neuartiger interessanter Materialien und Werkstoffe zu beschleunigen.

Einige der neu entdeckten Elpasolithkristalle weisen exotische elektronische Eigenschaften und ungewöhnliche Zusammensetzungen auf. «Die Kombination von künstlicher Intelligenz, Big Data, Quantenmechanik und Hochleistungsrechnen ermöglicht vielversprechende neue Wege, um unser Verständnis von Materialien zu vertiefen und um neue Materialien zu entdecken, die bloss mithilfe von menschlicher chemischer Intuition nicht in Erwägung gezogen worden wären», kommentiert Studienleiter Prof. Anatole von Lilienfeld die Ergebnisse.

Die Arbeit entstand in Zusammenarbeit mit Physikern der Universität Linköping (Schweden) und wurde auch im Rahmen des vom Schweizerische Nationalfonds geförderten Nationalen Forschungsschwerpunkts «MARVEL – Materials’ Revolution: Computational Design and Discovery of Novel Materials» durchgeführt.

Originalbeitrag
Felix Faber, Alexander Lindmaa, O. Anatole von Lilienfeld, and Rickard Armiento
Machine Learning Energies of 2M Elpasolithe (ABC2D6) Crystals
Physical Review Letters (2016), doi:10.1103/PhysRevLett.117.135502

Weitere Auskünfte
Prof. Dr. O. Anatole von Lilienfeld, Universität Basel, Departement Chemie, Tel. +41 61 267 38 45, E-Mail: anatole.vonlilienfeld@unibas.ch

Reto Caluori | Universität Basel
Weitere Informationen:
http://www.unibas.ch

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Spin-Strom aus Wärme: Neues Material für höhere Effizienz
20.11.2017 | Universität Bielefeld

nachricht cw-Wert wie ein Lkw: FH Aachen testet Weihnachtsbaum im Windkanal
20.11.2017 | FH Aachen

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Transparente Beschichtung für Alltagsanwendungen

Sport- und Outdoorbekleidung, die Wasser und Schmutz abweist, oder Windschutzscheiben, an denen kein Wasser kondensiert – viele alltägliche Produkte können von stark wasserabweisenden Beschichtungen profitieren. Am Karlsruher Institut für Technologie (KIT) haben Forscher um Dr. Bastian E. Rapp einen Werkstoff für solche Beschichtungen entwickelt, der sowohl transparent als auch abriebfest ist: „Fluoropor“, einen fluorierten Polymerschaum mit durchgehender Nano-/Mikrostruktur. Sie stellen ihn in Nature Scientific Reports vor. (DOI: 10.1038/s41598-017-15287-8)

In der Natur ist das Phänomen vor allem bei Lotuspflanzen bekannt: Wassertropfen perlen von der Blattoberfläche einfach ab. Diesen Lotuseffekt ahmen...

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Im Focus: «Kosmische Schlange» lässt die Struktur von fernen Galaxien erkennen

Die Entstehung von Sternen in fernen Galaxien ist noch weitgehend unerforscht. Astronomen der Universität Genf konnten nun erstmals ein sechs Milliarden Lichtjahre entferntes Sternensystem genauer beobachten – und damit frühere Simulationen der Universität Zürich stützen. Ein spezieller Effekt ermöglicht mehrfach reflektierte Bilder, die sich wie eine Schlange durch den Kosmos ziehen.

Heute wissen Astronomen ziemlich genau, wie sich Sterne in der jüngsten kosmischen Vergangenheit gebildet haben. Aber gelten diese Gesetzmässigkeiten auch für...

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

500 Kommunikatoren zu Gast in Braunschweig

20.11.2017 | Veranstaltungen

VDI-Expertenforum „Gefährdungsanalyse Trinkwasser"

20.11.2017 | Veranstaltungen

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Künstliche neuronale Netze: 5-Achs-Fräsbearbeitung lernt, sich selbst zu optimieren

20.11.2017 | Informationstechnologie

Tonmineral bewässert Erdmantel von innen

20.11.2017 | Geowissenschaften

Hemmung von microRNA-29 schützt vor Herzfibrosen

20.11.2017 | Biowissenschaften Chemie