Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kristalle, die flüssiger als Flüssigkeiten sind

20.03.2017

Physiker aus Augsburg und Dresden finden experimentelle Hinweise, dass sich Superfluidität und Supersolidität in magnetischen Systemen realisieren lassen.

Ein Material, das flüssig und zugleich fest ist, geht an die Grenzen dessen, was man sich gemeinhin vorzustellen vermag. Gleichwohl wird von der Physik seit über 50 Jahren theoretisch vorhergesagt, dass es solche als supersolid bezeichnete Materialien bzw. Materialzustände gibt. So waren theoretische Modelle zur Supersolidität Gegenstand intensiver Forschungen der klügsten Köpfe in der Physik, darunter die Nobelpreisträger Thouless, Anderson und Legget.


Darstellung der Spinell-Verbindung MnCr2S4 (Mn: rot, Cr: blau, S: gelb) als Supersolid: Geordnete Chromspins (rot) sind von Manganspins (gelb) umgeben, die die Symmetrie einer Supersolid-Phase haben.

© V. Tsurkan

Möglichkeiten, solch einen exotischen Materialzustand experimentell zu beobachten bzw. in einem Material zu realisieren, wurden bis heute allerdings nicht gefunden. Zeitgleich mit zwei internationalen Forschergruppen, die durch die Anwendung sogenannter „Atomfallen“ jetzt erfolgreich waren, berichten Physiker aus Augsburg und Dresden aktuell in Science Advances über einen von ihnen entdeckten Weg der Realisation von Supersolidität in Spinsystemen bei sehr hohen Magnetfeldern.

Fest, flüssig und gasförmig – das sind die drei klassischen Zustände von Materie, die uns vertraut sind. Dass ein Material zwei dieser Eigenschaften gleichzeitig besitzen könnte, widerspricht unserer Erfahrung und ist nur schwer vorstellbar. Noch unvorstellbarer scheint die Annahme, dass ein Material fest, also kristallin, und zugleich nicht nur flüssig, sondern superflüssig – also ohne jegliche Viskosität – sein könnte.

Die Physik kennt allerdings superfluides, also superflüssiges Helium, das völlig reibungsfrei durch engste Kapillaren dringen kann. Sie kennt auch supraleitende Elektronen, die Paare bilden und sich ohne jeden elektrischen Widerstand durch Metalle fortbewegen können. Aber weder Reibungsfreiheit noch das Fehlen jeglichen elektrischen Widerstands sind „normal“.

Beide sind prominente Beispiele für das 1924 vorhergesagte Bose-Einstein-Kondensat (BEK), mit dem ein extremer Aggregatzustand ununterscheidbarer Teilchen gemeint ist, ein makroskopischer Quantenzustand, der sich mit der klassischen Physik nicht bis ins Letzte erklären lässt.

Supersolidität – ein kristalliner Festkörper, der durch Quantenphänomene auch superfluide Eigenschaften aufweist, sich also wie eine Flüssigkeit ohne Viskosität verhalten kann – ist u. U. ein weiteres Beispiel für ein Bose-Einstein-Kondensat.

Deshalb ist Supersolidität ein weltweit aktuelles Thema der Forschung. Die von Antony Legget (Nobelpreis 2003) bereits im Jahre 1970 gestellte Frage „Can a Solid be Superfluid?“ konnte allerdings bis heute experimentell nicht zufriedenstellend beantwortet werden.

Über lange Zeit hinweg war es die größte Hoffnung der physikalischen Community, Supersolidität in ultrakaltem festem Helium zu realisieren. Diese Hoffnung hat sich nicht erfüllt. Als realistische alternative Methode zur Realisierung von Supersolidität wurden einzig lasergekühlte Atomfallen angesehen – eine Methode, bei der die Realisierung von Bose-Einstein-Kondensaten mit einer Anzahl von einigen hundert Atomen angestrebt wird. Und in der Tat konnten jüngst zwei internationale Arbeitsgruppen über die erstmalige Realisierung von Supersolidität auf eben diesem Weg berichten (J. Léonard et al., Nature 543, 87, 2017; J.-R. Li et al., Nature 543, 91, 2017).

Einen ganz neuen, auf magnetischen Spinsystemen beruhenden Weg zur Verwirklichung von Bose-Einstein Kondensationen bzw. von Phänomenen wie Superfluidität und Supersolidität sind Forscher des Zentrums für Elektronische Korrelationen und Magnetismus der Universität Augsburg in Kooperation mit Kollegen des Hochfeldmagnetlabors am Helmholtz-Zentrum Dresde-Rossendorf jetzt gegangen – und dies mit Erfolg: In Science Advances beschreiben sie, wie mit der Bose-Einstein-Kondensation von Magnonen – das sind angeregte Spinzustände in einem magnetischen Kristallgitter – kohärente Quantenzustände erzeugt werden können.

Atomare Spins im magnetischen Kristallgitter besitzen kollektive Anregungszustände sogenannte Magnonen. Die Bose-Einstein-Kondensation solcher Magnonen scheint sich nun als ein weiterer möglicher Weg zur Realisation kohärenter Quantenzustände zu erweisen: In einem von mit extrem hohen Magnetfeldern angeregten Spinsystem glauben die Physiker aus Augsburg und Dresden Superfluidät und insbesondere Supersolidität dingfest gemacht zu haben.

Sie wählten für ihre Untersuchungen die Mangan-Chrom-Schwefel-Verbindung MnCr2S4, einen Mangan-Chrom-Spinell, der bei tiefen Temperaturen eine ungewöhnliche Spinordnung zeigt: Im magnetischen Austauschfeld der Chrom-Spins richten sich die Mangan-Spins annähernd antiparallel aus, die Mangan-Spins wiederum zeigen aufgrund frustrierter Wechselwirkungen einen komplexen magnetischen Grundzustand, der als superfluide Phase charakterisiert werden kann. In hohen Magnetfeldern kann dieser Zustand sogar in eine supersolide Phase transformiert werden.

„In Kooperation mit der Gruppe des Kollegen Wosnitza in Dresden haben wir im dortigen Hochfeld-Magnetlabor MnCr2S4-Einkristalle mittels Magnetisierung und Ultraschall bei tiefen Temperaturen und Magnetfeldern von bis zu 60 Tesla untersucht“, berichtet Prof. Dr. Alois Loidl, Inhaber des Lehrstuhls für Experimentalphysik V am Augsburger Zentrum für Elektronische Korrelationen und Magnetismus. „Bei sehr hohen Magnetfeldern“, so Loidl weiter, „fanden wir in der Probe einen ungewöhnlich robusten magnetischen Zustand, bei dem die Mangan-Spins ideale antiparallele, also antiferromagnetische Ordnung zeigen. In diesem Zustand wird das magnetische Chrom-Austauschfeld durch das extrem hohe von außen angelegte Magnetfeld ideal kompensiert. Die Magnetisierung bleibt in einem Bereich von 25 Tesla absolut konstant.“

Loidls Mitarbeiter Dr. Vladimir Tsurkan ergänzt: „Ein derartiges Magnetisierungsplateau ist äußerst ungewöhnlich, und theoretisch wird vorhergesagt, dass in den daran angrenzenden Phasen Supersolidität vorliegt. Diese Phasen haben wir in der vorliegenden Arbeit nun identifiziert und charakterisiert. Mit dem Ergebnis unserer Untersuchungen an der Mangan-Chrom-Verbindung haben wir jetzt also ein Indiz dafür, dass magnetische Systeme unter extremen Temperatur-, Druck- oder Magnetfeld-Bedingungen als Quanten-Gittermodelle beschrieben werden können. Sie präsentieren sich damit als äußerst interessante Kandidaten zur Realisierung kohärenter Quantenphänomene.“


Originalpublikation:

V. Tsurkan, S. Zherlitsyn, L. Prodan, V. Felea, P.T. Cong, Y. Skourski, Zhe Wang, J. Deisenhofer, H.-A. Krug von Nidda, J. Wosnitza, and A. Loidl: Ultra-robust high-field magnetization plateau and supersolidity in bond-frustrated MnCr2S4 - Science Advances 3:e1601982 (2017)

Ansprechpartner:

Prof. Dr. Alois Loidl
Lehrstuhl für Experimentalphysik V/EKM
Universität Augsburg
D-86135 Augsburg
Telefon 0821/598-3600
alois.loidl@physik.uni-augsburg.de

Weitere Informationen:

http://advances.sciencemag.org/content/3/3/e1601982

Klaus P. Prem | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-augsburg.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Superharte Fenster aus transparenter Keramik
17.03.2017 | Deutsches Elektronen-Synchrotron DESY

nachricht Doppel-Düse spart Protein-Kristalle und erweitert das Spektrum der Kristallographie
16.03.2017 | Deutsches Elektronen-Synchrotron DESY

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kristalle, die flüssiger als Flüssigkeiten sind

Physiker aus Augsburg und Dresden finden experimentelle Hinweise, dass sich Superfluidität und Supersolidität in magnetischen Systemen realisieren lassen.

Ein Material, das flüssig und zugleich fest ist, geht an die Grenzen dessen, was man sich gemeinhin vorzustellen vermag. Gleichwohl wird von der Physik seit...

Im Focus: Superharte Fenster aus transparenter Keramik

Forschern gelingt bei DESY erste Herstellung von durchsichtigem Siliziumnitrid

Forscher haben bei DESY ein superhartes Fenster aus einer weit verbreiteten Industriekeramik hergestellt. Es ist das erste durchsichtige Werkstück aus...

Im Focus: Weniger Rußemissionen durch Biotreibstoffe in der Luftfahrt

Eine Beimischung von 50 Prozent Biotreibstoff reduziert die Rußpartikelemissionen eines Flugzeugs um 50 bis 70 Prozent gegenüber der Verbrennung von reinem Kerosin. Dies zeigt eine in "Nature" veröffentlichte Studie, die auf gemeinsamen Forschungen der NASA, des Deutschen Zentrums für Luft- und Raumfahrt und des kanadischen National Research Council beruht und an denen die Physikerin und ERC-Preisträgerin Bernadett Weinzierl von der Universität Wien maßgeblich beteiligt war. Die Ergebnisse liefern weltweit erstmals wichtige Anhaltspunkte darüber, wie Biotreibstoffe nicht nur die Emissionen im Umfeld von Flughäfen mindern, sondern auch zu einer klimafreundlichen Entwicklung beitragen können.

Flugzeugtriebwerke stoßen Rußpartikel aus. Diese wirken als Kondensationskeime für kleine Eiskristalle, die als Kondensstreifen sichtbar werden. Die...

Im Focus: 15 Jahre GRACE: Satelliten-Duo fliegt dreimal so lange wie geplant

Wie viele Revolutionen begann GRACE mit einem radikalen Gedanken: „Die völlig neue Idee bei GRACE war, dass man Messungen der Masse nutzen könnte, um Informationen über das System Erde zu gewinnen“, sagt der leitende Wissenschaftler Byron Tapley vom Center for Space Research der University of Texas (UTCSR) in Austin. Massenverlagerungen zu verfolgen war der Schlüssel zu einem besseren Verständnis dafür, wie Wasser und die feste Erde sich tief im Untergrund verhalten, wo niemand hinsehen kann.

Wie viele Revolutionen begann GRACE mit einem radikalen Gedanken: „Die völlig neue Idee bei GRACE war, dass man Messungen der Masse nutzen könnte, um...

Im Focus: Auf dem Weg zum Mars: Instrumententest im Schwarzwald

Geophysikalische Eigenschaften des „roten Planeten“ zu untersuchen, ist Ziel der für 2018 geplanten Marsmission „InSight“ der NASA und europäischer Partner. Darüber hinaus sollen grundlegende Fragen des Planeten- und Sonnensystems geklärt werden, um die Entstehungsgeschichte der Planeten des inneren Sonnensystems besser zu verstehen, zu denen auch die Erde gehört. Ein hochempfindlicher Seismograph (SEIS) wird als ein Hauptinstrument mit an Bord der Mission sein. Am Geowissenschaftlichen Gemeinschaftsobservatorium des KIT und der Universität Stuttgart (Black Forest Observatory – BFO) wird zurzeit das Qualifyingmodel, das „Schwestergerät“ dieses Seismometers, getestet.

Geophysikalische Eigenschaften des „roten Planeten“ zu untersuchen, ist Ziel der für 2018 geplanten Marsmission „InSight“ der NASA und europäischer Partner....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Leibniz Gesundheitstechnologien mit Symposien zu „Plasmamedizin“ und „Biomaterialien“

20.03.2017 | Veranstaltungen

Ladetechnologie-Experten zu Gast im Ruhrgebiet

20.03.2017 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Mai 2017

17.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Leibniz Gesundheitstechnologien mit Symposien zu „Plasmamedizin“ und „Biomaterialien“

20.03.2017 | Veranstaltungsnachrichten

Should I Stay or Should I Go: Wie sich natürliche Killerzellen an kranke Zellen anheften

20.03.2017 | Biowissenschaften Chemie

CeBIT 2017: TH Wildau unterstützt Organisationen und Behörden beim Einsatz mobiler IT-Geräte

20.03.2017 | CeBIT 2017