Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kristalle, die flüssiger als Flüssigkeiten sind

20.03.2017

Physiker aus Augsburg und Dresden finden experimentelle Hinweise, dass sich Superfluidität und Supersolidität in magnetischen Systemen realisieren lassen.

Ein Material, das flüssig und zugleich fest ist, geht an die Grenzen dessen, was man sich gemeinhin vorzustellen vermag. Gleichwohl wird von der Physik seit über 50 Jahren theoretisch vorhergesagt, dass es solche als supersolid bezeichnete Materialien bzw. Materialzustände gibt. So waren theoretische Modelle zur Supersolidität Gegenstand intensiver Forschungen der klügsten Köpfe in der Physik, darunter die Nobelpreisträger Thouless, Anderson und Legget.


Darstellung der Spinell-Verbindung MnCr2S4 (Mn: rot, Cr: blau, S: gelb) als Supersolid: Geordnete Chromspins (rot) sind von Manganspins (gelb) umgeben, die die Symmetrie einer Supersolid-Phase haben.

© V. Tsurkan

Möglichkeiten, solch einen exotischen Materialzustand experimentell zu beobachten bzw. in einem Material zu realisieren, wurden bis heute allerdings nicht gefunden. Zeitgleich mit zwei internationalen Forschergruppen, die durch die Anwendung sogenannter „Atomfallen“ jetzt erfolgreich waren, berichten Physiker aus Augsburg und Dresden aktuell in Science Advances über einen von ihnen entdeckten Weg der Realisation von Supersolidität in Spinsystemen bei sehr hohen Magnetfeldern.

Fest, flüssig und gasförmig – das sind die drei klassischen Zustände von Materie, die uns vertraut sind. Dass ein Material zwei dieser Eigenschaften gleichzeitig besitzen könnte, widerspricht unserer Erfahrung und ist nur schwer vorstellbar. Noch unvorstellbarer scheint die Annahme, dass ein Material fest, also kristallin, und zugleich nicht nur flüssig, sondern superflüssig – also ohne jegliche Viskosität – sein könnte.

Die Physik kennt allerdings superfluides, also superflüssiges Helium, das völlig reibungsfrei durch engste Kapillaren dringen kann. Sie kennt auch supraleitende Elektronen, die Paare bilden und sich ohne jeden elektrischen Widerstand durch Metalle fortbewegen können. Aber weder Reibungsfreiheit noch das Fehlen jeglichen elektrischen Widerstands sind „normal“.

Beide sind prominente Beispiele für das 1924 vorhergesagte Bose-Einstein-Kondensat (BEK), mit dem ein extremer Aggregatzustand ununterscheidbarer Teilchen gemeint ist, ein makroskopischer Quantenzustand, der sich mit der klassischen Physik nicht bis ins Letzte erklären lässt.

Supersolidität – ein kristalliner Festkörper, der durch Quantenphänomene auch superfluide Eigenschaften aufweist, sich also wie eine Flüssigkeit ohne Viskosität verhalten kann – ist u. U. ein weiteres Beispiel für ein Bose-Einstein-Kondensat.

Deshalb ist Supersolidität ein weltweit aktuelles Thema der Forschung. Die von Antony Legget (Nobelpreis 2003) bereits im Jahre 1970 gestellte Frage „Can a Solid be Superfluid?“ konnte allerdings bis heute experimentell nicht zufriedenstellend beantwortet werden.

Über lange Zeit hinweg war es die größte Hoffnung der physikalischen Community, Supersolidität in ultrakaltem festem Helium zu realisieren. Diese Hoffnung hat sich nicht erfüllt. Als realistische alternative Methode zur Realisierung von Supersolidität wurden einzig lasergekühlte Atomfallen angesehen – eine Methode, bei der die Realisierung von Bose-Einstein-Kondensaten mit einer Anzahl von einigen hundert Atomen angestrebt wird. Und in der Tat konnten jüngst zwei internationale Arbeitsgruppen über die erstmalige Realisierung von Supersolidität auf eben diesem Weg berichten (J. Léonard et al., Nature 543, 87, 2017; J.-R. Li et al., Nature 543, 91, 2017).

Einen ganz neuen, auf magnetischen Spinsystemen beruhenden Weg zur Verwirklichung von Bose-Einstein Kondensationen bzw. von Phänomenen wie Superfluidität und Supersolidität sind Forscher des Zentrums für Elektronische Korrelationen und Magnetismus der Universität Augsburg in Kooperation mit Kollegen des Hochfeldmagnetlabors am Helmholtz-Zentrum Dresde-Rossendorf jetzt gegangen – und dies mit Erfolg: In Science Advances beschreiben sie, wie mit der Bose-Einstein-Kondensation von Magnonen – das sind angeregte Spinzustände in einem magnetischen Kristallgitter – kohärente Quantenzustände erzeugt werden können.

Atomare Spins im magnetischen Kristallgitter besitzen kollektive Anregungszustände sogenannte Magnonen. Die Bose-Einstein-Kondensation solcher Magnonen scheint sich nun als ein weiterer möglicher Weg zur Realisation kohärenter Quantenzustände zu erweisen: In einem von mit extrem hohen Magnetfeldern angeregten Spinsystem glauben die Physiker aus Augsburg und Dresden Superfluidät und insbesondere Supersolidität dingfest gemacht zu haben.

Sie wählten für ihre Untersuchungen die Mangan-Chrom-Schwefel-Verbindung MnCr2S4, einen Mangan-Chrom-Spinell, der bei tiefen Temperaturen eine ungewöhnliche Spinordnung zeigt: Im magnetischen Austauschfeld der Chrom-Spins richten sich die Mangan-Spins annähernd antiparallel aus, die Mangan-Spins wiederum zeigen aufgrund frustrierter Wechselwirkungen einen komplexen magnetischen Grundzustand, der als superfluide Phase charakterisiert werden kann. In hohen Magnetfeldern kann dieser Zustand sogar in eine supersolide Phase transformiert werden.

„In Kooperation mit der Gruppe des Kollegen Wosnitza in Dresden haben wir im dortigen Hochfeld-Magnetlabor MnCr2S4-Einkristalle mittels Magnetisierung und Ultraschall bei tiefen Temperaturen und Magnetfeldern von bis zu 60 Tesla untersucht“, berichtet Prof. Dr. Alois Loidl, Inhaber des Lehrstuhls für Experimentalphysik V am Augsburger Zentrum für Elektronische Korrelationen und Magnetismus. „Bei sehr hohen Magnetfeldern“, so Loidl weiter, „fanden wir in der Probe einen ungewöhnlich robusten magnetischen Zustand, bei dem die Mangan-Spins ideale antiparallele, also antiferromagnetische Ordnung zeigen. In diesem Zustand wird das magnetische Chrom-Austauschfeld durch das extrem hohe von außen angelegte Magnetfeld ideal kompensiert. Die Magnetisierung bleibt in einem Bereich von 25 Tesla absolut konstant.“

Loidls Mitarbeiter Dr. Vladimir Tsurkan ergänzt: „Ein derartiges Magnetisierungsplateau ist äußerst ungewöhnlich, und theoretisch wird vorhergesagt, dass in den daran angrenzenden Phasen Supersolidität vorliegt. Diese Phasen haben wir in der vorliegenden Arbeit nun identifiziert und charakterisiert. Mit dem Ergebnis unserer Untersuchungen an der Mangan-Chrom-Verbindung haben wir jetzt also ein Indiz dafür, dass magnetische Systeme unter extremen Temperatur-, Druck- oder Magnetfeld-Bedingungen als Quanten-Gittermodelle beschrieben werden können. Sie präsentieren sich damit als äußerst interessante Kandidaten zur Realisierung kohärenter Quantenphänomene.“


Originalpublikation:

V. Tsurkan, S. Zherlitsyn, L. Prodan, V. Felea, P.T. Cong, Y. Skourski, Zhe Wang, J. Deisenhofer, H.-A. Krug von Nidda, J. Wosnitza, and A. Loidl: Ultra-robust high-field magnetization plateau and supersolidity in bond-frustrated MnCr2S4 - Science Advances 3:e1601982 (2017)

Ansprechpartner:

Prof. Dr. Alois Loidl
Lehrstuhl für Experimentalphysik V/EKM
Universität Augsburg
D-86135 Augsburg
Telefon 0821/598-3600
alois.loidl@physik.uni-augsburg.de

Weitere Informationen:

http://advances.sciencemag.org/content/3/3/e1601982

Klaus P. Prem | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-augsburg.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Auf dem Weg zur optischen Kernuhr
19.04.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht Laser erzeugt Magnet – und radiert ihn wieder aus
18.04.2018 | Helmholtz-Zentrum Dresden-Rossendorf

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gammastrahlungsblitze aus Plasmafäden

Neuartige hocheffiziente und brillante Quelle für Gammastrahlung: Anhand von Modellrechnungen haben Physiker des Heidelberger MPI für Kernphysik eine neue Methode für eine effiziente und brillante Gammastrahlungsquelle vorgeschlagen. Ein gigantischer Gammastrahlungsblitz wird hier durch die Wechselwirkung eines dichten ultra-relativistischen Elektronenstrahls mit einem dünnen leitenden Festkörper erzeugt. Die reichliche Produktion energetischer Gammastrahlen beruht auf der Aufspaltung des Elektronenstrahls in einzelne Filamente, während dieser den Festkörper durchquert. Die erreichbare Energie und Intensität der Gammastrahlung eröffnet neue und fundamentale Experimente in der Kernphysik.

Die typische Wellenlänge des Lichtes, die mit einem Objekt des Mikrokosmos wechselwirkt, ist umso kürzer, je kleiner dieses Objekt ist. Für Atome reicht dies...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Wie schwingt ein Molekül, wenn es berührt wird?

Physiker aus Regensburg, Kanazawa und Kalmar untersuchen Einfluss eines äußeren Kraftfeldes

Physiker der Universität Regensburg (Deutschland), der Kanazawa University (Japan) und der Linnaeus University in Kalmar (Schweden) haben den Einfluss eines...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Nachhaltige und innovative Lösungen

19.04.2018 | HANNOVER MESSE

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungsnachrichten

Auf dem Weg zur optischen Kernuhr

19.04.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics