Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Das Kraftwerk im Krebsnebel

28.03.2012
Magic-Teleskope messen die bisher höchsten Energien in der Gammastrahlung eines Pulsars und stellen die Theorie in Frage

Der Pulsar im Zentrum des berühmten Krebsnebels ist ein wahres Energiebündel. Das haben jetzt die beiden beiden Magic-Teleskope auf der kanarischen Insel La Palma bestätigt.


Kosmischer Leuchtturm: Der Krebspulsar stößt im Bereich der Gammastrahlen Pulse mit bis zu 400 Giga-Elektronenvolt (GeV) aus – mindestens 50-mal mehr als bisher von Theoretikern erwartet. Die Animation zeigt die gepulste Strahlung, gemessen mit den beiden Magic-Teleskopen. © S. Klepser, MAGIC Collaboration


In unterschiedlichem Licht betrachtet: Die Abbildung zeigt den Krebsnebel im optischen (links) und im Röntgenteleskop (Mitte) sowie eine grafische Darstellung des Pulsar-Magnetfelds (rechts). Die Lichtkurve (unten) gibt den periodischen Ausstoß von Gammastrahlen in einem Abstand von 0,0337 Sekunden wieder, das heißt, zwei Pulse pro Umdrehung. © NASA, ESA, J. Hester, A. Loll, CXC, SAO, F. Seward et al., MAGIC Collaboration

Sie beobachteten den Pulsar im bisher schwer zugänglichen Bereich der Gammastrahlen von 25 bis 400 Giga-Elektronenvolt (GeV) und fanden, dass er tatsächlich Pulse mit der maximal messbaren Energie bis zu 400 GeV aussendet – mindestens 50-mal mehr als von Theoretikern erwartet. Das aber bringt die Astrophysiker in Erklärungsnot: „Dahinter muss ein Prozess stecken, den wir noch nicht kennen“, sagt Razmik Mirzoyan, Projektleiter am Max-Planck-Institut für Physik.

Der Neutronenstern im Krebsnebel ist einer der bekanntesten Pulsare. Er dreht sich 30-mal pro Sekunde um die eigene Achse und besitzt ein Magnetfeld, das mit 100 Millionen Tesla mehr als 1000 Milliarden Mal stärker ist als das irdische. Der Pulsar versorgt den berühmten Krebsnebel, der sich etwa 6000 Lichtjahre von der Erde entfernt im Sternbild Stier befindet, mit Energie. Sowohl der Pulsar als auch der Nebel sind Überreste einer Supernova, die im Jahr 1054 explodierte und sich eine Zeitlang dem bloßem Auge sogar am Taghimmel zeigte.

Neutronensterne sind extrem verdichtete Kugeln mit einer Masse ähnlich jener der Sonne, jedoch mit Durchmessern von lediglich 20 Kilometern. Was aber macht Neutronensterne zu Pulsaren, von denen die Astrophysiker in unserer Milchstraße rund 2000 kennen? Neutronensterne rotieren äußerst regelmäßig und sehr schnell, ein „Tag“ dauert auf ihnen zwischen einer Millisekunde und zehn Sekunden. Während seiner Drehung sendet der Stern ständig geladene Teilchen aus, hauptsächlich Elektronen und Positronen (positiv geladene Elektronen).

Die Teilchen bewegen sich entlang von Magnetfeldlinien, die wiederum mit derselben Geschwindigkeit rotieren wie der Neutronenstern selbst. Dabei geben sie gebündelte Strahlung in allen möglichen Bereichen des Spektrums ab, von Radiowellen bis hin zum Gammalicht. Überstreicht ein solches Strahlenbündel die Sichtlinie zur Erde, dann blitzt der Stern kurz auf – ähnlich wie das Signal eines Leuchtturms.

Schon vor einigen Jahren haben die Magic-Teleskope Gammastrahlung vom Krebspulsar mit einer Energie von mehr als 25 GeV empfangen und dabei die von Satelliten gemessene Grenze um das Fünffache übertroffen. Diese Strahlung, so schlossen die Forscher damals, muss mindestens 60 Kilometer über der Oberfläche des Neutronensterns entstehen. Der Grund: Die hochenergetischen Lichtteilchen werden vom Magnetfeld des Sterns so wirksam abgeschirmt, dass eine Quelle sehr nahe am Stern bei derart hohen Energien gar nicht gesehen werden könnte.

Nun zeigen die Messungen von Magic über einen Zeitraum von zwei Jahren, dass der pulsierende Ausstoß mit einer Energie von 400 GeV weit über die erwarteten Werte hinausgeht – und das auch noch in extrem kurzen Impulsen von etwa einer Millisekunde Dauer. Das Ergebnis stellt die bisherigen Theorien über Pulsare in Frage, denn bisher galten für alle diese Objekte deutlich niedrigere Energieobergrenzen.

Ein neues theoretisches Modell des mit dem Magic-Team kooperierenden Theoretikers Kouichi Hirotani von Academia Sinica des Institute of Astronomy and Astrophysics in Tawain erklärt das Phänomen mit einem kaskadenartigen Vorgang: Danach werden sekundäre Teilchen produziert, welche die von der Magnetosphäre des Pulsars gebildete Barriere überwinden können. Eine andere mögliche Erklärung von Felix Aharonian von Dublin Institute for Advanced Studies und weiteren Forschern verbindet dieses Emissionsmerkmal mit der ebenso rätselhaften Physik des dunklen Pulsarwinds – einem Strom aus Elektronen und Positronen sowie elektromagnetischer Strahlung, der letztlich im Krebsnebel aufgeht.

Doch auch die aktuellen Modelle erklären weder die extrem hohe Energie noch die Kürze der Impulse befriedigend. So hoffen die Astrophysiker, dass zukünftige Beobachtungen hierzu die Datenstatistik verbessern und das Rätsel lösen helfen. Das könnte neues Licht auf die Familie der Pulsare werfen – und auf den Krebsnebel selbst, der als eines der meist studierten Objekte unserer Milchstraße gilt.

Ansprechpartner

Dr. Masahiro Teshima
Director MPI for Physics, Chair of the MAGIC Collaboration Board
Max-Planck-Institut für Physik, München
Telefon: +49 89 32354-301
E-Mail: masahiro.teshima@mpp.mpg.de
Dr. Razmik Mirzoyan
Project Leader, Co-Spokesperson MAGIC Collaboration
Max-Planck-Institut für Physik, München
Telefon: +49 89 32354-328
E-Mail: razmik.mirzoyan@mpp.mpg.de
Silke Zollinger
Referentin für Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Physik, München
Telefon: +49 89 32354-292
Fax: +49 89 3226-704
E-Mail: silke.zollinger@mpp.mpg.de
Originalpublikation
MAGIC Collaboration, J. Aleksic et al., R.K. Bock, D. Borla Tridon, E. Carmona, P. Colin, C. Fruck, D. Häfner, J. Hose, T. Jogler, H. Kellermann, J. Krause, E. Lorenz, D. Mazin, R. Mirzoyan, N. Nowak, R. Orito, D. Paneque, K. Saito, T.Y. Saito, T. Schweizer, M. Shayduk, B. Steinke, H. Takami, M. Teshima, R.M. Wagner
Phase-resolved energy spectra of the Crab pulsar in the range of 50-400GeV measured with the MAGIC telescopes

Astronomy & Astrophysics, 30. März 2012

Dr. Masahiro Teshima | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/5569740/Kraftwerk_Krebsnebel

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Maschinelles Lernen im Quantenlabor
19.01.2018 | Universität Innsbruck

nachricht Seltsames Verhalten eines Sterns offenbart Schwarzes Loch, das sich in riesigem Sternhaufen verbirgt
17.01.2018 | ESO Science Outreach Network - Haus der Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Fliegen wird smarter – Kommunikationssystem LYRA im Lufthansa FlyingLab

• Prototypen-Test im Lufthansa FlyingLab
• LYRA Connect ist eine von drei ausgewählten Innovationen
• Bessere Kommunikation zwischen Kabinencrew und Passagieren

Die Zukunft des Fliegens beginnt jetzt: Mehrere Monate haben die Finalisten des Mode- und Technologiewettbewerbs „Telekom Fashion Fusion & Lufthansa FlyingLab“...

Im Focus: Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

Die dünnsten heute herstellbaren Materialien haben eine Dicke von einem Atom. Sie zeigen völlig neue Eigenschaften und sind zweidimensional – bisher bekannte Materialien sind dreidimensional aufgebaut. Um sie herstellen und handhaben zu können, liegen sie bislang als Film auf dreidimensionalen Materialien auf. Erstmals ist es Physikern der Universität des Saarlandes um Uwe Hartmann jetzt mit Forschern vom Leibniz-Institut für Neue Materialien gelungen, die mechanischen Eigenschaften von freitragenden Membranen atomar dünner Materialien zu charakterisieren. Die Messungen erfolgten mit dem Rastertunnelmikroskop an Graphen. Ihre Ergebnisse veröffentlichen die Forscher im Fachmagazin Nanoscale.

Zweidimensionale Materialien sind erst seit wenigen Jahren bekannt. Die Wissenschaftler André Geim und Konstantin Novoselov erhielten im Jahr 2010 den...

Im Focus: Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen

Sogenannte vorverspannte Zustände beschleunigen auch photochemische Reaktionen

Was ermöglicht den schnellen Transfer von Elektronen, beispielsweise in der Photosynthese? Ein interdisziplinäres Forscherteam hat die Funktionsweise wichtiger...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Kongress Meditation und Wissenschaft

19.01.2018 | Veranstaltungen

LED Produktentwicklung – Leuchten mit aktuellem Wissen

18.01.2018 | Veranstaltungen

6. Technologie- und Anwendungsdialog am 18. Januar 2018 an der TH Wildau: „Intelligente Logistik“

18.01.2018 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rittal vereinbart mit dem Betriebsrat von RWG Sozialplan - Zukunftsorientierter Dialog führt zur Einigkeit

19.01.2018 | Unternehmensmeldung

Open Science auf offener See

19.01.2018 | Geowissenschaften

Original bleibt Original - Neues Produktschutzverfahren für KFZ-Kennzeichenschilder

19.01.2018 | Informationstechnologie