Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Das Kraftwerk im Krebsnebel

28.03.2012
Magic-Teleskope messen die bisher höchsten Energien in der Gammastrahlung eines Pulsars und stellen die Theorie in Frage

Der Pulsar im Zentrum des berühmten Krebsnebels ist ein wahres Energiebündel. Das haben jetzt die beiden beiden Magic-Teleskope auf der kanarischen Insel La Palma bestätigt.


Kosmischer Leuchtturm: Der Krebspulsar stößt im Bereich der Gammastrahlen Pulse mit bis zu 400 Giga-Elektronenvolt (GeV) aus – mindestens 50-mal mehr als bisher von Theoretikern erwartet. Die Animation zeigt die gepulste Strahlung, gemessen mit den beiden Magic-Teleskopen. © S. Klepser, MAGIC Collaboration


In unterschiedlichem Licht betrachtet: Die Abbildung zeigt den Krebsnebel im optischen (links) und im Röntgenteleskop (Mitte) sowie eine grafische Darstellung des Pulsar-Magnetfelds (rechts). Die Lichtkurve (unten) gibt den periodischen Ausstoß von Gammastrahlen in einem Abstand von 0,0337 Sekunden wieder, das heißt, zwei Pulse pro Umdrehung. © NASA, ESA, J. Hester, A. Loll, CXC, SAO, F. Seward et al., MAGIC Collaboration

Sie beobachteten den Pulsar im bisher schwer zugänglichen Bereich der Gammastrahlen von 25 bis 400 Giga-Elektronenvolt (GeV) und fanden, dass er tatsächlich Pulse mit der maximal messbaren Energie bis zu 400 GeV aussendet – mindestens 50-mal mehr als von Theoretikern erwartet. Das aber bringt die Astrophysiker in Erklärungsnot: „Dahinter muss ein Prozess stecken, den wir noch nicht kennen“, sagt Razmik Mirzoyan, Projektleiter am Max-Planck-Institut für Physik.

Der Neutronenstern im Krebsnebel ist einer der bekanntesten Pulsare. Er dreht sich 30-mal pro Sekunde um die eigene Achse und besitzt ein Magnetfeld, das mit 100 Millionen Tesla mehr als 1000 Milliarden Mal stärker ist als das irdische. Der Pulsar versorgt den berühmten Krebsnebel, der sich etwa 6000 Lichtjahre von der Erde entfernt im Sternbild Stier befindet, mit Energie. Sowohl der Pulsar als auch der Nebel sind Überreste einer Supernova, die im Jahr 1054 explodierte und sich eine Zeitlang dem bloßem Auge sogar am Taghimmel zeigte.

Neutronensterne sind extrem verdichtete Kugeln mit einer Masse ähnlich jener der Sonne, jedoch mit Durchmessern von lediglich 20 Kilometern. Was aber macht Neutronensterne zu Pulsaren, von denen die Astrophysiker in unserer Milchstraße rund 2000 kennen? Neutronensterne rotieren äußerst regelmäßig und sehr schnell, ein „Tag“ dauert auf ihnen zwischen einer Millisekunde und zehn Sekunden. Während seiner Drehung sendet der Stern ständig geladene Teilchen aus, hauptsächlich Elektronen und Positronen (positiv geladene Elektronen).

Die Teilchen bewegen sich entlang von Magnetfeldlinien, die wiederum mit derselben Geschwindigkeit rotieren wie der Neutronenstern selbst. Dabei geben sie gebündelte Strahlung in allen möglichen Bereichen des Spektrums ab, von Radiowellen bis hin zum Gammalicht. Überstreicht ein solches Strahlenbündel die Sichtlinie zur Erde, dann blitzt der Stern kurz auf – ähnlich wie das Signal eines Leuchtturms.

Schon vor einigen Jahren haben die Magic-Teleskope Gammastrahlung vom Krebspulsar mit einer Energie von mehr als 25 GeV empfangen und dabei die von Satelliten gemessene Grenze um das Fünffache übertroffen. Diese Strahlung, so schlossen die Forscher damals, muss mindestens 60 Kilometer über der Oberfläche des Neutronensterns entstehen. Der Grund: Die hochenergetischen Lichtteilchen werden vom Magnetfeld des Sterns so wirksam abgeschirmt, dass eine Quelle sehr nahe am Stern bei derart hohen Energien gar nicht gesehen werden könnte.

Nun zeigen die Messungen von Magic über einen Zeitraum von zwei Jahren, dass der pulsierende Ausstoß mit einer Energie von 400 GeV weit über die erwarteten Werte hinausgeht – und das auch noch in extrem kurzen Impulsen von etwa einer Millisekunde Dauer. Das Ergebnis stellt die bisherigen Theorien über Pulsare in Frage, denn bisher galten für alle diese Objekte deutlich niedrigere Energieobergrenzen.

Ein neues theoretisches Modell des mit dem Magic-Team kooperierenden Theoretikers Kouichi Hirotani von Academia Sinica des Institute of Astronomy and Astrophysics in Tawain erklärt das Phänomen mit einem kaskadenartigen Vorgang: Danach werden sekundäre Teilchen produziert, welche die von der Magnetosphäre des Pulsars gebildete Barriere überwinden können. Eine andere mögliche Erklärung von Felix Aharonian von Dublin Institute for Advanced Studies und weiteren Forschern verbindet dieses Emissionsmerkmal mit der ebenso rätselhaften Physik des dunklen Pulsarwinds – einem Strom aus Elektronen und Positronen sowie elektromagnetischer Strahlung, der letztlich im Krebsnebel aufgeht.

Doch auch die aktuellen Modelle erklären weder die extrem hohe Energie noch die Kürze der Impulse befriedigend. So hoffen die Astrophysiker, dass zukünftige Beobachtungen hierzu die Datenstatistik verbessern und das Rätsel lösen helfen. Das könnte neues Licht auf die Familie der Pulsare werfen – und auf den Krebsnebel selbst, der als eines der meist studierten Objekte unserer Milchstraße gilt.

Ansprechpartner

Dr. Masahiro Teshima
Director MPI for Physics, Chair of the MAGIC Collaboration Board
Max-Planck-Institut für Physik, München
Telefon: +49 89 32354-301
E-Mail: masahiro.teshima@mpp.mpg.de
Dr. Razmik Mirzoyan
Project Leader, Co-Spokesperson MAGIC Collaboration
Max-Planck-Institut für Physik, München
Telefon: +49 89 32354-328
E-Mail: razmik.mirzoyan@mpp.mpg.de
Silke Zollinger
Referentin für Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Physik, München
Telefon: +49 89 32354-292
Fax: +49 89 3226-704
E-Mail: silke.zollinger@mpp.mpg.de
Originalpublikation
MAGIC Collaboration, J. Aleksic et al., R.K. Bock, D. Borla Tridon, E. Carmona, P. Colin, C. Fruck, D. Häfner, J. Hose, T. Jogler, H. Kellermann, J. Krause, E. Lorenz, D. Mazin, R. Mirzoyan, N. Nowak, R. Orito, D. Paneque, K. Saito, T.Y. Saito, T. Schweizer, M. Shayduk, B. Steinke, H. Takami, M. Teshima, R.M. Wagner
Phase-resolved energy spectra of the Crab pulsar in the range of 50-400GeV measured with the MAGIC telescopes

Astronomy & Astrophysics, 30. März 2012

Dr. Masahiro Teshima | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/5569740/Kraftwerk_Krebsnebel

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Auf dem Weg zur optischen Kernuhr
19.04.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht Laser erzeugt Magnet – und radiert ihn wieder aus
18.04.2018 | Helmholtz-Zentrum Dresden-Rossendorf

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gammastrahlungsblitze aus Plasmafäden

Neuartige hocheffiziente und brillante Quelle für Gammastrahlung: Anhand von Modellrechnungen haben Physiker des Heidelberger MPI für Kernphysik eine neue Methode für eine effiziente und brillante Gammastrahlungsquelle vorgeschlagen. Ein gigantischer Gammastrahlungsblitz wird hier durch die Wechselwirkung eines dichten ultra-relativistischen Elektronenstrahls mit einem dünnen leitenden Festkörper erzeugt. Die reichliche Produktion energetischer Gammastrahlen beruht auf der Aufspaltung des Elektronenstrahls in einzelne Filamente, während dieser den Festkörper durchquert. Die erreichbare Energie und Intensität der Gammastrahlung eröffnet neue und fundamentale Experimente in der Kernphysik.

Die typische Wellenlänge des Lichtes, die mit einem Objekt des Mikrokosmos wechselwirkt, ist umso kürzer, je kleiner dieses Objekt ist. Für Atome reicht dies...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Wie schwingt ein Molekül, wenn es berührt wird?

Physiker aus Regensburg, Kanazawa und Kalmar untersuchen Einfluss eines äußeren Kraftfeldes

Physiker der Universität Regensburg (Deutschland), der Kanazawa University (Japan) und der Linnaeus University in Kalmar (Schweden) haben den Einfluss eines...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Nachhaltige und innovative Lösungen

19.04.2018 | HANNOVER MESSE

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungsnachrichten

Auf dem Weg zur optischen Kernuhr

19.04.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics