Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kosmologie - Botschaften vom Big Bang

05.02.2015

LMU-Kosmologe Viatcheslav Mukhanov berechnet, was unmittelbar nach dem Urknall geschah. Nun haben die Messungen des Weltraumteleskops Planck seine Theorie zur Entstehung des Universums voll bestätigt.

Was passierte bei der Geburt des Weltalls? Wie konnten sich Sterne, Planeten und ganze Galaxien überhaupt bilden?

Das sind die Fragen, die Viatcheslav Mukhanov mit seinen Berechnungen zu beantworten versucht. Mukhanov ist Physik-Ordinarius an der LMU und Experte für Theoretische Quantenkosmologie. Und es ist seine Idee der Quantenfluktuationen, die ein entscheidendes Moment in der Startphase des Universums beschreibt: Ohne die Dichteschwankungen, die aus den minimalen Fluktuationen entstehen, lässt sich die spätere Verteilung der Materie und die Bildung von Sternen, Planeten und Galaxien schwerlich erklären.

Jetzt hat das Planck-Konsortium neue Auswertungen von Messergebnissen veröffentlicht. Das Weltraumteleskop hat die kosmische Hintergrundstrahlung vermessen und damit ein Abbild des frühen Universums geliefert. Diese neuen Planck-Daten decken sich exakt mit den Berechnungen des LMU-Kosmologen, etwa für die entscheidende Größe des sogenannten Spektralindexes.

„Die Planck-Daten haben die grundlegende Voraussage bestätigt, dass Quantenfluktuationen am Anfang aller Strukturen im Universum stehen“, bekräftigt Jean-Loup Puget, der leitende Wissenschaftler des HFI-Instruments der Planck-Mission. „Besser könnte meine Theorie nicht bestätigt werden“, sagt Mukhanov. Schon 1981 hatte der Wissenschaftler, seit 1997 an der LMU, seinen Ansatz erstmals publiziert.

Spuren aus ferner Vergangenheit

Dass auch die Quanten im frühen Universum gewissen Fluktuationen unterlegen haben müssen, ergibt sich für Mukhanov aus der Heisenbergschen Unschärferelation. Sie besagt, dass sich Ort und Impuls eines Teilchens nicht exakt angeben lassen. Aus den submikroskopisch winzigen Fluktuationen entstanden makroskopische Dichteschwankungen. Ohne diesen Mechanismus, dessen genaue Ausprägung und Größenordnung Mukhanov berechnet, ließe sich die Verteilung von Materie im heutigen Universum nicht vorhersagen.

Die neuen Planck-Datensätze sind noch detaillierter und aussagekräftiger als die ersten Auswertungen, die vor knapp zwei Jahren veröffentlicht wurden. Mit niemals zuvor erreichter Präzision zeigen sie die Muster, mit denen sich die Fluktuationen in die Strahlung des jungen Universums eingebrannt haben. Als eine Botschaft aus ferner Vergangenheit können Teleskope wie Planck sie heute – 13,8 Milliarden Jahre später – als Mikrowellenstrahlung einfangen. So geben die Planck-Messungen Aufschluss über die Geburt des Weltalls.

Gravitationswellen nicht beglaubigt

Die Existenz von sogenannten primordialen Gravitationswellen konnten die Planck-Daten indes nicht zeigen. Diese weiteren lange gesuchten Signale des fernen Urknalls meinte das BICEP2-Team aus seinen Daten herauslesen zu können, das Teleskop vermisst von der Antarktis aus die kosmische Hintergrundstrahlung. Im März 2014 meldete das Team seine sensationelle Entdeckung – vorschnell, wie sich bald herausstellte. Und soeben veröffentlichten Planck- und BICEP2-Forscher gemeinsam einen Abgleich ihrer Daten, der keinen Nachweis der Gravitationswellen erbrachte.

LMU-Forscher Mukhanov hatte schon im Frühjahr 2014 erklärt, dass die Ergebnisse von BICEP2 und Planck nicht gleichzeitig stimmen können. „Gravitationswellen mag es trotzdem geben“, sagt der LMU-Wissenschaftler. „Aber unsere Messgeräte sind offenbar noch nicht genau genug.“ Doch unabhängig davon, ob ein tatsächlicher Nachweis der Gravitationswellen gelingt: Ohne den Mechanismus der Quantenfluktuation, ergänzt Mukhanov, kommt kein Modell aus, das erklären soll, was unmittelbar nach dem Urknall geschah.

Kontakt:
Prof. Dr. Viatcheslav F. Mukhanov
Arnold Sommerfeld Center für Theoretische Physik
Lehrstuhl für Kosmologie
Theresienstr. 37
80333 München
Tel: +49 89 2180-4544
E-Mail: Viatcheslav.Mukhanov@physik.lmu.de

Luise Dirscherl | Ludwig-Maximilians-Universität München
Weitere Informationen:
http://www.uni-muenchen.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas
19.09.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern
15.09.2017 | Max-Planck-Institut für Quantenoptik

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantensensoren entschlüsseln magnetische Ordnung in neuartigem Halbleitermaterial

Physiker konnte erstmals eine spiralförmige magnetische Ordnung in einem multiferroischen Material abbilden. Diese gelten als vielversprechende Kandidaten für zukünftige Datenspeicher. Der Nachweis gelang den Forschern mit selbst entwickelten Quantensensoren, die elektromagnetische Felder im Nanometerbereich analysieren können und an der Universität Basel entwickelt wurden. Die Ergebnisse von Wissenschaftlern des Departements Physik und des Swiss Nanoscience Institute der Universität Basel sowie der Universität Montpellier und Forschern der Universität Paris-Saclay wurden in der Zeitschrift «Nature» veröffentlicht.

Multiferroika sind Materialien, die gleichzeitig auf elektrische wie auch auf magnetische Felder reagieren. Die beiden Eigenschaften kommen für gewöhnlich...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

»Laser in Composites Symposium« in Aachen – von der Wissenschaft in die Anwendung

19.09.2017 | Veranstaltungen

Biowissenschaftler tauschen neue Erkenntnisse über molekulare Gen-Schalter aus

19.09.2017 | Veranstaltungen

Zwei Grad wärmer – und dann?

19.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

»Laser in Composites Symposium« in Aachen – von der Wissenschaft in die Anwendung

19.09.2017 | Veranstaltungsnachrichten

Zentraler Schalter der Immunabwehr gefunden

19.09.2017 | Biowissenschaften Chemie

Neue Materialchemie für Hochleistungsbatterien

19.09.2017 | Biowissenschaften Chemie