Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kosmisches Schwergewicht gibt Einstein Recht

26.04.2013
Wissenschaftler des Max-Planck-Instituts für Radioastronomie (MPIfR) und der Universität Bonn haben mit einem internationalen Team am extrem schweren Pulsar „PSR J0348+0432“ und seinem Begleiter mit Erfolg die Gültigkeit der Einstein’schen Theorie erprobt.

Durch die Abstrahlung von Gravitationswellen verliert das System kontinuierlich an Orbitalenergie. Die Forscher berechneten, dass das Duo in 400 Millionen Jahren miteinander verschmelzen und der Pulsar möglicherweise in einem Schwarzen Loch kollabieren wird. Die Ergebnisse werden in der aktuellen Ausgabe des renommierten Journals „Science“ veröffentlicht.


Künstlerische Darstellung des Pulsars PSR J0348+0432 (rechts) und links der Weiße Zwerg als Begleitstern. Der Pulsar ist sehr kompakt und führt zu einer starken Deformation der Raumzeit, verdeutlicht durch das Gitter.
(c) Grafik: ESO/L. Calçada

Pulsare sind schnell rotierende Neutronensterne, die wie ein Leuchtturm regelmäßig Radiosignalpulse aussenden. Einen besonders extremen Vertreter dieser Himmelsobjekte und seinen Begleiter haben nun Wissenschaftler des Max-Planck-Instituts für Radioastronomie (MPIfR) Bonn und des Argelander-Instituts für Astronomie der Universität Bonn mit einem internationalen Team und einem ganzen Arsenal von Teleskopen genauer untersucht. „PSR J0348+0432“ ist ein Pulsar, der erst vor wenigen Jahren in einem Doppelsternsystem mit einem Weißen Zwerg entdeckt wurde. Der Pulsar vollführt seine Umlaufbahn rasend schnell in nur 2,5 Stunden. Die Gravitation auf seiner Oberfläche ist mehr als 300 Milliarden Mal stärker als auf der Erde. Im Zentrum des Pulsars findet man mehr als eine Milliarde Tonnen Materie auf das Volumen eines Zuckerwürfels zusammengepresst.

Der schwerste bekannte Pulsar

„Schon bei einer ersten schnellen Analyse der Daten war mir klar, dass wir uns einen ganz schönen Brocken eingefangen hatten“, sagt John Antoniadis, Doktorand am MPIfR und Erstautor der Veröffentlichung. „Mit der doppelten Masse der Sonne ist das der schwerste bis jetzt bekannte Pulsar.“ Für die Astronomen sind die extremen physikalischen Bedingungen von „PSR J0348+0432“ ein ideales Laboratorium - sie lassen sich unmöglich auf der Erde nachbilden. „Für diesen Pulsar mussten wir unsere Sternentwicklungsmodelle bis an die Grenze strapazieren“, sagt Dr. Thomas Tauris von der Arbeitsgruppe „Stellarphysik“ am Argelander-Institut für Astronomie der Universität Bonn, der die Entwicklung solcher Doppelsternsysteme erforscht.

Der Pulsar hat seinen Kompagnon aufgefressen

Die Ergebnisse ermöglichen neue Einblicke in die Evolution von Doppelsternsystemen. Für das Forscherteam um Prof. Dr. Norbert Langer und Dr. Tauris vom Argelander-Institut für Astronomie der Universität Bonn war es eine interessante Herausforderung, die einzigartige Kombination von Eigenschaften des Systems in den Modellen abzubilden: kurze Umlaufperiode, große Masse, relativ langsame Eigenrotation und starkes Pulsar-Magnetfeld. Die Wissenschaftler entwickelten Modelle, wie sich das Doppelsternsystem gebildet und weiterentwickelt hat. „Dieses setzt einen Massentransfer voraus, bei dem der Pulsar seinen Kompagnon auffrisst“, berichtet Dr. Tauris. Das Ergebnis dieses kosmischen „Recyclings“ ist ein schnell rotierender, massiver Neutronenstern und ein Weißer Zwerg als Überbleibsel des früheren Begleitsterns.

Einsteins Theorie hat auch diesen Test bestanden

Der Pulsar und der weiße Zwerg befinden sich in einer Distanz von nur 830.000 Kilometer zueinander – das ist nur etwas mehr als ein Sonnenradius. Dadurch strahlt das System Gravitationswellen ab, die zu einer weiteren Verringerung des Abstands von etwa 1,4 Millimeter pro Tag führen - exakt wie es von der Einstein’schen Relativitätstheorie vorhergesagt wird. „Wenn man den großen Aufwand berücksichtigt, der in die Ableitung der Gleichungen gesteckt worden ist, dann ist es eine sehr gute Nachricht für unsere Kollegen aus der Gravitationswellen-Astronomie, dass Einsteins Theorie auch diesen Test bestanden hat“, sagt MPIfR-Direktor Prof. Dr. Michael Kramer.

Der Pulsar und sein Begleiter verschmelzen in 400 Millionen Jahren

Durch die Abstrahlung von Gravitationswellen verliert das System kontinuierlich an Orbitalenergie, wodurch sich die zwei Sterne einander immer näher kommen. „Wir haben berechnet, dass die beiden Sterne in 400 Millionen Jahren miteinander verschmelzen“, erläutert Dr. Tauris. Dadurch wird der Pulsar noch mehr Materie von seinem Begleiter aufsaugen, und der Pulsar wird möglicherweise in einem Schwarzen Loch kollabieren.

Publikation: A massive pulsar in a compact relativistic binary, Science, DOI: 10.1126/science.1233232

Kontakt:

Dr. Thomas Tauris
Argelander-Institut für Astronomie der Universität Bonn
und Max-Planck-Institut für Radioastronomie Bonn
Tel. 0228/733660
E-Mail: tauris@astro.uni-bonn.de

Johannes Seiler | idw
Weitere Informationen:
http://www.uni-bonn.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht MADMAX: Ein neues Experiment zur Erforschung der Dunklen Materie
20.10.2017 | Max-Planck-Institut für Physik

nachricht Hochfeldmagnet am BER II: Einblick in eine versteckte Ordnung
20.10.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hochfeldmagnet am BER II: Einblick in eine versteckte Ordnung

Seit dreißig Jahren gibt eine bestimmte Uranverbindung der Forschung Rätsel auf. Obwohl die Kristallstruktur einfach ist, versteht niemand, was beim Abkühlen unter eine bestimmte Temperatur genau passiert. Offenbar entsteht eine so genannte „versteckte Ordnung“, deren Natur völlig unklar ist. Nun haben Physiker erstmals diese versteckte Ordnung näher charakterisiert und auf mikroskopischer Skala untersucht. Dazu nutzten sie den Hochfeldmagneten am HZB, der Neutronenexperimente unter extrem hohen magnetischen Feldern ermöglicht.

Kristalle aus den Elementen Uran, Ruthenium, Rhodium und Silizium haben eine geometrisch einfache Struktur und sollten keine Geheimnisse mehr bergen. Doch das...

Im Focus: Schmetterlingsflügel inspiriert Photovoltaik: Absorption lässt sich um bis zu 200 Prozent steigern

Sonnenlicht, das von Solarzellen reflektiert wird, geht als ungenutzte Energie verloren. Die Flügel des Schmetterlings „Gewöhnliche Rose“ (Pachliopta aristolochiae) zeichnen sich durch Nanostrukturen aus, kleinste Löcher, die Licht über ein breites Spektrum deutlich besser absorbieren als glatte Oberflächen. Forschern am Karlsruher Institut für Technologie (KIT) ist es nun gelungen, diese Nanostrukturen auf Solarzellen zu übertragen und deren Licht-Absorptionsrate so um bis zu 200 Prozent zu steigern. Ihre Ergebnisse veröffentlichten die Wissenschaftler nun im Fachmagazin Science Advances. DOI: 10.1126/sciadv.1700232

„Der von uns untersuchte Schmetterling hat eine augenscheinliche Besonderheit: Er ist extrem dunkelschwarz. Das liegt daran, dass er für eine optimale...

Im Focus: Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

Im Blut zirkulierende Biomoleküle und Zellen sind Träger diagnostischer Information, deren Analyse hochwirksame, individuelle Therapien ermöglichen. Um diese Information zu erschließen, haben Wissenschaftler des Fraunhofer-Instituts für Lasertechnik ILT ein Mikrochip-basiertes Diagnosegerät entwickelt: Der »AnaLighter« analysiert und sortiert klinisch relevante Biomoleküle und Zellen in einer Blutprobe mit Licht. Dadurch können Frühdiagnosen beispielsweise von Tumor- sowie Herz-Kreislauf-Erkrankungen gestellt und patientenindividuelle Therapien eingeleitet werden. Experten des Fraunhofer ILT stellen diese Technologie vom 13.–16. November auf der COMPAMED 2017 in Düsseldorf vor.

Der »AnaLighter« ist ein kompaktes Diagnosegerät zum Sortieren von Zellen und Biomolekülen. Sein technologischer Kern basiert auf einem optisch schaltbaren...

Im Focus: Neue Möglichkeiten für die Immuntherapie beim Lungenkrebs entdeckt

Eine gemeinsame Studie der Universität Bern und des Inselspitals Bern zeigt, dass spezielle Bindegewebszellen, die in normalen Blutgefässen die Wände abdichten, bei Lungenkrebs nicht mehr richtig funktionieren. Zusätzlich unterdrücken sie die immunologische Bekämpfung des Tumors. Die Resultate legen nahe, dass diese Zellen ein neues Ziel für die Immuntherapie gegen Lungenkarzinome sein könnten.

Lungenkarzinome sind die häufigste Krebsform weltweit. Jährlich werden 1.8 Millionen Neudiagnosen gestellt; und 2016 starben 1.6 Millionen Menschen an der...

Im Focus: Sicheres Bezahlen ohne Datenspur

Ob als Smartphone-App für die Fahrkarte im Nahverkehr, als Geldwertkarten für das Schwimmbad oder in Form einer Bonuskarte für den Supermarkt: Für viele gehören „elektronische Geldbörsen“ längst zum Alltag. Doch vielen Kunden ist nicht klar, dass sie mit der Nutzung dieser Angebote weitestgehend auf ihre Privatsphäre verzichten. Am Karlsruher Institut für Technologie (KIT) entsteht ein sicheres und anonymes System, das gleichzeitig Alltagstauglichkeit verspricht. Es wird nun auf der Konferenz ACM CCS 2017 in den USA vorgestellt.

Es ist vor allem das fehlende Problembewusstsein, das den Informatiker Andy Rupp von der Arbeitsgruppe „Kryptographie und Sicherheit“ am KIT immer wieder...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die Zukunft der Luftfracht

23.10.2017 | Veranstaltungen

Ehrung des Autors Herbert W. Franke mit dem Kurd-Laßwitz-Sonderpreis 2017

23.10.2017 | Veranstaltungen

Das Immunsystem in Extremsituationen

19.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Antibiotikaresistenzen: Ein multiresistenter Escherichia coli-Stamm auf dem Vormarsch

23.10.2017 | Biowissenschaften Chemie

Sturmfeder bekämpft Orkanschäden

23.10.2017 | Maschinenbau

Vorstellung eines neuen Zellkultursystems für die Analyse von OPC-Zellen im Zebrafisch

23.10.2017 | Biowissenschaften Chemie