Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein „kosmischer Wetterballon“ im Zentrum der Milchstraße

30.09.2013
Astrophysiker bestimmen Stärke des Strahlungsfeldes mit Hilfe einer intergalaktischen Gaswolke

Das Strahlungsfeld im Zentrum der Milchstraße muss 1.000 Mal stärker sein als in der Zone, in der sich auch unsere Sonne befindet. Das haben Astrophysiker am Sonderforschungsbereich „Das Milchstraßensystem“ der Ruperto Carola mit Hilfe von Computersimulationen herausgefunden.

Die Berechnungen der Forscher des Zentrums für Astronomie der Universität Heidelberg und des Max-Planck-Instituts für Astronomie basieren auf den Daten einer Art „kosmischen Wetterballons“ – den Temperaturdaten einer besonders dichten Gaswolke in der Nähe des galaktischen Zentrums. Die Forschungen bieten neue Einblicke in Vorgänge der Sternentstehung, die unter den extremen Bedingungen im Zentrum der Milchstraße vermutlich anders ablaufen als in den Randbereichen der Galaxie.

Das Zentrum unserer Heimatgalaxie ist nach den Worten der Heidelberger Forscher ein „unwirtlicher Ort“. Es herrschen dort „Wetterbedingungen“, die sich auf der Erde am ehesten mit dem stürmischen Kap Horn vergleichen lassen. Ein Schwarzes Loch sowie sehr heiße oder explodierende Sterne sorgen für einen intensiven „Strahlungswind“, während sich unsere Sonne im Randbereich der Milchstraße quasi an der italienischen Riviera der Galaxie befindet. „Um im Bild zu bleiben: An einem Ort mit derart extremen Bedingungen würde niemand eine ,Ferienanlage‘ errichten.

Dennoch lassen sich dort durchaus ,Bauaktivitäten‘ feststellen: In der Nähe des galaktischen Zentrums existieren Gaswolken, in denen sich gerade junge Sterne bilden“, sagt Dr. Paul Clark, der im Team von Prof. Dr. Ralf Klessen am Zentrum für Astronomie der Universität Heidelberg (ZAH) tätig ist.

Eine besonders dichte Gaswolke mit der Bezeichnung G0.253+0.016 haben Dr. Clark und seine Kollegen jetzt genauer untersucht, denn trotz ihrer Nähe zum galaktischen Zentrum lässt sich bei G0.253+0.016 die Bildung einer großen Zahl neuer Sterne beobachten. Der Vorgang der Sternentstehung ist allgemein ein Wechselspiel von zwei Kräften: Unter dem Einfluss der Gravitation zieht sich interstellares Gas zusammen, während der innere Druck des Gases der Verdichtung entgegenwirkt. „Nahe am galaktischen Zentrum ist dieses Gas durch die Stärke des Strahlungsfeldes stärker aufgeheizt als in den Randbereichen der Galaxie, so dass die Bildung von Sternen im Zentrum der Milchstraße vermutlich anders abläuft, als wir es bislang von den Randbereichen kennen“, sagt Dr. Clark.

Um die Vorgänge im Zentrum der Milchstraße besser verstehen zu können, müssen die dort herrschenden „Wetterbedingungen“ – in diesem Fall die Stärke des Strahlungsfeldes – genauer bestimmt werden. Die Wissenschaftler nutzten dazu G0.253+0.016 als eine Art „kosmischen Wetterballon“. Die Temperatur dieser Gaswolke konnte mit Hilfe von astronomischen Observationen ermittelt werden. Die Daten dienten als Basis, um die Temperatur von G0.253+0.016 in Abhängigkeit zum Strahlungsfeld zu berechnen. Die Heidelberger Astrophysiker variierten dabei die mögliche Stärke dieses Feldes so lange, bis das Ergebnis der Berechnungen mit den realen Temperaturmessungen übereinstimmte. Bei diesen Simulationen kam der in Jülich stationierte Supercomputer „Milky Way“, der für Projekte des Sonderforschungsbereichs genutzt wird, zum Einsatz.

Die Computersimulationen haben ergeben, dass das Strahlungsfeld im Zentrum der Milchstraße 1.000 Mal stärker sein muss als in der Umgebung unserer Sonne, die sich etwa 25.000 Lichtjahre entfernt am Rand der Galaxie befindet. Die Heidelberger Astrophysiker gehen davon aus, dass unter diesen extremen Bedingungen in der Gaswolke wesentlich weniger Kohlenstoffmonoxid (CO) entsteht als üblich. „Kohlenstoffmonoxid spielt eine wesentliche Rolle in den meisten Regionen, in denen Sterne entstehen, da es dazu beiträgt, die Temperatur der Wolke zu regulieren. Der geringere Gehalt an CO in den Wolken des galaktischen Zentrums hat erhebliche Auswirkungen auf ihre Entwicklung“, erläutert Dr. Clark. Weitere Untersuchungen an dem „kosmischen Wetterballon“ sollen dazu beitragen, den Prozess der Sternentstehung im Zentrum der Milchstraße vollständig zu verstehen.

An den Forschungsarbeiten, deren Ergebnisse in „The Astrophysical Journal Letters“ veröffentlicht wurden, waren neben Dr. Clark und Prof. Klessen außerdem Dr. Simon Glover und Dr. Rahul Shetty beteiligt. Vom Heidelberger Max-Planck-Institut für Astronomie hat Dr. Sarah Ragan an den Untersuchungen mitgewirkt.

Informationen im Internet:
Sonderforschungsbereich „Das Milchstraßensystem“:
http://www.zah.uni-heidelberg.de/de/sfb881
Originalveröffentlichung:
P.C. Clark, S.C.O. Glover, S.E. Ragan, R. Shetty and R.S. Klessen: On the Temperature Structure of the Galactic Center Cloud G0.253+0.016, The Astrophysical Journal Letters, Volume 768, Issue 2, article id. L34, 6 pp. (2013), doi: 10.1088/2041-8205/768/2/L34

Kontakt:

Dr. Paul Clark
Zentrum für Astronomie der Universität Heidelberg
Institut für Theoretische Astrophysik
Telefon (06221) 54-8967, p.clark@uni-heidelberg.de
Dr. Guido Thimm
Zentrum für Astronomie der Universität Heidelberg
Telefon (06221) 54-1805, thimm@ari.uni-heidelberg.de
Kommunikation und Marketing
Pressestelle, Telefon (06221) 54-2311
presse@rektorat.uni-heidelberg.de

Marietta Fuhrmann-Koch | idw
Weitere Informationen:
http://www.uni-heidelberg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Neue Methode zur Charakterisierung von Graphen
30.05.2017 | Universität Basel

nachricht Neue Methode für die Datenübertragung mit Licht
29.05.2017 | Leibniz-Institut für Photonische Technologien e. V.

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neue Methode zur Charakterisierung von Graphen

Wissenschaftler haben eine neue Methode entwickelt, um die Eigenschaften von Graphen ohne das Anlegen störender elektrischer Kontakte zu charakterisieren. Damit lassen sich gleichzeitig der Widerstand und die Quantenkapazität von Graphen sowie von anderen zweidimensionalen Materialien untersuchen. Dies berichten Forscher vom Swiss Nanoscience Institute und Departement Physik der Universität Basel im Wissenschaftsjournal «Physical Review Applied».

Graphen besteht aus einer einzigen Lage von Kohlenstoffatomen. Es ist transparent, härter als Diamant, stärker als Stahl, dabei aber flexibel und ein deutlich...

Im Focus: New Method of Characterizing Graphene

Scientists have developed a new method of characterizing graphene’s properties without applying disruptive electrical contacts, allowing them to investigate both the resistance and quantum capacitance of graphene and other two-dimensional materials. Researchers from the Swiss Nanoscience Institute and the University of Basel’s Department of Physics reported their findings in the journal Physical Review Applied.

Graphene consists of a single layer of carbon atoms. It is transparent, harder than diamond and stronger than steel, yet flexible, and a significantly better...

Im Focus: Detaillierter Blick auf molekularen Gifttransporter

Transportproteine in unseren Körperzellen schützen uns vor gewissen Vergiftungen. Forschende der ETH Zürich und der Universität Basel haben nun die hochaufgelöste dreidimensionale Struktur eines bedeutenden menschlichen Transportproteins aufgeklärt. Langfristig könnte dies helfen, neue Medikamente zu entwickeln.

Fast alle Lebewesen haben im Lauf der Evolution Mechanismen entwickelt, um Giftstoffe, die ins Innere ihrer Zellen gelangt sind, wieder loszuwerden: In der...

Im Focus: Neue Methode für die Datenübertragung mit Licht

Der steigende Bedarf an schneller, leistungsfähiger Datenübertragung erfordert die Entwicklung neuer Verfahren zur verlustarmen und störungsfreien Übermittlung von optischen Informationssignalen. Wissenschaftler der Universität Johannesburg, des Instituts für Angewandte Optik der Friedrich-Schiller-Universität Jena und des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) präsentieren im Fachblatt „Journal of Optics“ eine neue Möglichkeit, glasfaserbasierte und kabellose optische Datenübertragung effizient miteinander zu verbinden.

Dank des Internets können wir in Sekundenbruchteilen mit Menschen rund um den Globus in Kontakt treten. Damit die Kommunikation reibungslos funktioniert,...

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wissenschaftsforum Chemie 2017

30.05.2017 | Veranstaltungen

Erfolgsfaktor Digitalisierung

30.05.2017 | Veranstaltungen

Lebensdauer alternder Brücken - prüfen und vorausschauen

29.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Neue Methode zur Charakterisierung von Graphen

30.05.2017 | Physik Astronomie

Riesenfresszellen steuern die Entwicklung von Nerven und Blutgefäßen im Gehirn

30.05.2017 | Biowissenschaften Chemie

Nano-U-Boot mit Selbstzerstörungs-Mechanismus

30.05.2017 | Biowissenschaften Chemie