Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein „kosmischer Wetterballon“ im Zentrum der Milchstraße

30.09.2013
Astrophysiker bestimmen Stärke des Strahlungsfeldes mit Hilfe einer intergalaktischen Gaswolke

Das Strahlungsfeld im Zentrum der Milchstraße muss 1.000 Mal stärker sein als in der Zone, in der sich auch unsere Sonne befindet. Das haben Astrophysiker am Sonderforschungsbereich „Das Milchstraßensystem“ der Ruperto Carola mit Hilfe von Computersimulationen herausgefunden.

Die Berechnungen der Forscher des Zentrums für Astronomie der Universität Heidelberg und des Max-Planck-Instituts für Astronomie basieren auf den Daten einer Art „kosmischen Wetterballons“ – den Temperaturdaten einer besonders dichten Gaswolke in der Nähe des galaktischen Zentrums. Die Forschungen bieten neue Einblicke in Vorgänge der Sternentstehung, die unter den extremen Bedingungen im Zentrum der Milchstraße vermutlich anders ablaufen als in den Randbereichen der Galaxie.

Das Zentrum unserer Heimatgalaxie ist nach den Worten der Heidelberger Forscher ein „unwirtlicher Ort“. Es herrschen dort „Wetterbedingungen“, die sich auf der Erde am ehesten mit dem stürmischen Kap Horn vergleichen lassen. Ein Schwarzes Loch sowie sehr heiße oder explodierende Sterne sorgen für einen intensiven „Strahlungswind“, während sich unsere Sonne im Randbereich der Milchstraße quasi an der italienischen Riviera der Galaxie befindet. „Um im Bild zu bleiben: An einem Ort mit derart extremen Bedingungen würde niemand eine ,Ferienanlage‘ errichten.

Dennoch lassen sich dort durchaus ,Bauaktivitäten‘ feststellen: In der Nähe des galaktischen Zentrums existieren Gaswolken, in denen sich gerade junge Sterne bilden“, sagt Dr. Paul Clark, der im Team von Prof. Dr. Ralf Klessen am Zentrum für Astronomie der Universität Heidelberg (ZAH) tätig ist.

Eine besonders dichte Gaswolke mit der Bezeichnung G0.253+0.016 haben Dr. Clark und seine Kollegen jetzt genauer untersucht, denn trotz ihrer Nähe zum galaktischen Zentrum lässt sich bei G0.253+0.016 die Bildung einer großen Zahl neuer Sterne beobachten. Der Vorgang der Sternentstehung ist allgemein ein Wechselspiel von zwei Kräften: Unter dem Einfluss der Gravitation zieht sich interstellares Gas zusammen, während der innere Druck des Gases der Verdichtung entgegenwirkt. „Nahe am galaktischen Zentrum ist dieses Gas durch die Stärke des Strahlungsfeldes stärker aufgeheizt als in den Randbereichen der Galaxie, so dass die Bildung von Sternen im Zentrum der Milchstraße vermutlich anders abläuft, als wir es bislang von den Randbereichen kennen“, sagt Dr. Clark.

Um die Vorgänge im Zentrum der Milchstraße besser verstehen zu können, müssen die dort herrschenden „Wetterbedingungen“ – in diesem Fall die Stärke des Strahlungsfeldes – genauer bestimmt werden. Die Wissenschaftler nutzten dazu G0.253+0.016 als eine Art „kosmischen Wetterballon“. Die Temperatur dieser Gaswolke konnte mit Hilfe von astronomischen Observationen ermittelt werden. Die Daten dienten als Basis, um die Temperatur von G0.253+0.016 in Abhängigkeit zum Strahlungsfeld zu berechnen. Die Heidelberger Astrophysiker variierten dabei die mögliche Stärke dieses Feldes so lange, bis das Ergebnis der Berechnungen mit den realen Temperaturmessungen übereinstimmte. Bei diesen Simulationen kam der in Jülich stationierte Supercomputer „Milky Way“, der für Projekte des Sonderforschungsbereichs genutzt wird, zum Einsatz.

Die Computersimulationen haben ergeben, dass das Strahlungsfeld im Zentrum der Milchstraße 1.000 Mal stärker sein muss als in der Umgebung unserer Sonne, die sich etwa 25.000 Lichtjahre entfernt am Rand der Galaxie befindet. Die Heidelberger Astrophysiker gehen davon aus, dass unter diesen extremen Bedingungen in der Gaswolke wesentlich weniger Kohlenstoffmonoxid (CO) entsteht als üblich. „Kohlenstoffmonoxid spielt eine wesentliche Rolle in den meisten Regionen, in denen Sterne entstehen, da es dazu beiträgt, die Temperatur der Wolke zu regulieren. Der geringere Gehalt an CO in den Wolken des galaktischen Zentrums hat erhebliche Auswirkungen auf ihre Entwicklung“, erläutert Dr. Clark. Weitere Untersuchungen an dem „kosmischen Wetterballon“ sollen dazu beitragen, den Prozess der Sternentstehung im Zentrum der Milchstraße vollständig zu verstehen.

An den Forschungsarbeiten, deren Ergebnisse in „The Astrophysical Journal Letters“ veröffentlicht wurden, waren neben Dr. Clark und Prof. Klessen außerdem Dr. Simon Glover und Dr. Rahul Shetty beteiligt. Vom Heidelberger Max-Planck-Institut für Astronomie hat Dr. Sarah Ragan an den Untersuchungen mitgewirkt.

Informationen im Internet:
Sonderforschungsbereich „Das Milchstraßensystem“:
http://www.zah.uni-heidelberg.de/de/sfb881
Originalveröffentlichung:
P.C. Clark, S.C.O. Glover, S.E. Ragan, R. Shetty and R.S. Klessen: On the Temperature Structure of the Galactic Center Cloud G0.253+0.016, The Astrophysical Journal Letters, Volume 768, Issue 2, article id. L34, 6 pp. (2013), doi: 10.1088/2041-8205/768/2/L34

Kontakt:

Dr. Paul Clark
Zentrum für Astronomie der Universität Heidelberg
Institut für Theoretische Astrophysik
Telefon (06221) 54-8967, p.clark@uni-heidelberg.de
Dr. Guido Thimm
Zentrum für Astronomie der Universität Heidelberg
Telefon (06221) 54-1805, thimm@ari.uni-heidelberg.de
Kommunikation und Marketing
Pressestelle, Telefon (06221) 54-2311
presse@rektorat.uni-heidelberg.de

Marietta Fuhrmann-Koch | idw
Weitere Informationen:
http://www.uni-heidelberg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Kleinste Teilchen aus fernen Galaxien!
22.09.2017 | Bergische Universität Wuppertal

nachricht Tanzende Elektronen verlieren das Rennen
22.09.2017 | Universität Bielefeld

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie