Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kosmische Kollisionen schmieden Gold

08.09.2011
Der Ort, an dem die schwersten chemischen Elemente im Universum wie Blei oder Gold entstehen, dürfte nun gefunden sein: In einer heftigen Kollision verschmelzende Neutronensterne sind die idealen Produktionsstätten.

Wissenschaftler am Max-Planck-Institut für Astrophysik (MPA) und dem Exzellenzcluster Universe sowie an der Freien Universität Brüssel (ULB) haben mit detaillierten numerischen Simulationen bestätigt, dass die relevanten Atomkernreaktionen tatsächlich dort ablaufen und dabei die schwersten Elemente in den beobachteten Häufigkeiten erzeugt werden.


Wo ist Gold entstanden? Lange war der kosmische Ursprungsort dieses seltenen Edelmetalls und anderer sehr schwerer chemischer Elemente unbekannt. Nun bestätigen neue theoretische Modelle die Vermutung, es könnte bei Kollisionen zwischen zwei Neutronensternen “geschmiedet” werden.
Fotos: Natürliche Goldklumpen aus Kalifornien und Australien; Natural History Museum, London

Viele schwere chemische Elemente entstehen durch das nukleare Brennen in Sternen. So fusioniert auch im Inneren unserer Sonne ständig Wasserstoff zu Helium und setzt dabei Energie frei. Massereichere Sterne als die Sonne schmieden danach aus Helium schwerere Elemente. Dieser Prozess funktioniert aber nur bis hin zum Eisen. Weil weiterer Energiegewinn in Fusionsreaktionen nicht möglich ist, können noch schwerere Atomkerne so nicht erzeugt werden. Sie bilden sich durch Einfang von ungeladenen Neutronen auf mittelschwere “Saatkerne”.

Zwei Prozesse spielen hierbei eine besondere Rolle: der langsame und der schnelle Neutroneneinfang. Der langsame Neutroneneinfang oder s-Prozess (vom englischen “slow” für langsam) läuft bei niedrigen Neutronendichten im Inneren von Sternen in deren späten Entwicklungsstadien ab. Der schnelle r-Prozess (vom englischen “rapid” für schnell) benötigt sehr hohe Neutronendichten. Die Physiker wissen, dass dieser r-Prozess für die Entstehung eines großen Teils der schwersten Elemente (mit Kernmassenzahlen A>80) verantwortlich ist, darunter Platin, Gold, Thorium und Plutonium (Abb. 1). Allerdings standen die Wissenschaftler vor der Frage, in welchen astrophysikalischen Objekten dieser Prozess ablaufen kann.

“Die Herkunft von etwa der Hälfte der schweren Elemente im Universum war bisher ein ungelöstes Rätsel”, sagt Hans-Thomas Janka, leitender Wissenschaftler am Max-Planck-Institut für Astrophysik (MPA) und Mitarbeiter im Exzellenzcluster Universe. “Lange dachte man, dass sie in Supernova-Explosionen produziert werden könnten, neuere Modelle gehen aber von dieser Theorie weg.”

Ein anderes mögliches Szenario bieten Neutronensterne (siehe Anm. 1), die in einem Doppelsystem am Ende einer Jahrmillionen dauernden Entwicklung in einer gigantischen Kollision miteinander verschmelzen. Wissenschaftler am MPA haben nun zum ersten Mal zusammen mit einem Kollegen von der Freien Universität Brüssel (ULB) die Vorgänge, die bei einer derartigen Verschmelzung ablaufen, in allen Schritten im Detail mit Computermodellen berechnet (Abb.2). Sie kombinierten dabei relativistische, hydrodynamische Simulationen des kosmischen Zusammenstoßes mit Berechnungen der Kernreaktionen von über 5000 Atomkernarten (chemische Elemente und deren Isotope (siehe Anm. 2)) in der bei der Sternkollision gewaltsam ausgeschleuderten Materie.

“Durch Gezeiten- und Druckkräfte werden innerhalb von tausendstel Sekunden nach der Verschmelzung der Neutronensterne einige Jupitermassen extrem heißer Materie ausgestoßen”, erklärt Andreas Bauswein, der die Simulationen am MPA durchführte. Wenn sich dieses sog. Plasma auf unter 10 Milliarden Grad abgekühlt hat, laufen die verschiedensten Kernreaktionen ab, unter anderem auch radioaktive Zerfälle, und ermöglichen die Bildung sehr schwerer Elemente. “Die schweren Elemente werden dabei in verschiedenen Reaktionsketten mehrfach prozessiert (`recycelt'), wobei Zerfälle, die zur Spaltung superschwerer Nuklide führen, eine entscheidende Rolle spielen. Dadurch hängt die endgültige Häufigkeitsverteilung der entstandenen Elemente nur wenig von den Ausgangsbedingungen des Modells ab”, fügt Stephane Goriely hinzu, der ULB-Wissenschaftler und nukleare Astrophysiker des Teams (siehe auch Abb. 3). Dies passt gut bereits länger gehegten Vermutungen, dass nur die Reaktionseigenschaften der beteiligten Atomkerne ausschlaggebend für die produzierte Elementverteilung sein sollten. Nur so lässt sich verstehen, warum in allen untersuchten Sternen wie auch im Sonnensystem nahezu identische relative Häufigkeiten der schweren r-Prozess-Elemente beobachtet werden.

Die Simulationen zeigten, dass die Häufigkeitsverteilung der schwersten Elemente (mit Massenzahlen A>140) sehr gut mit der in unserem Sonnensystem beobachteten übereinstimmt. Kombiniert man das Ergebnis der Modellrechnungen mit der geschätzten Zahl von Neutronensternkollisionen, die in der Milchstraße stattgefunden haben, so bestätigt sich, dass solche Ereignisse tatsächlich die Hauptquellen der schwersten chemischen Elemente im Universum sein können.

Um die theoretischen Vorhersagen weiter zu verfeinern, sind neue Studien geplant, sowohl zusätzliche Computersimulationen, die die physikalischen Prozesse noch genauer nachbilden, als auch Beobachtungskampagnen, um die frisch erzeugten schweren Elemente zum ersten Mal direkt am Ort ihres Entstehens nachzuweisen. Durch den radioaktiven Zerfall der superschweren Atomkerne wird das ausgeschleuderte Material nämlich stark geheizt und erstrahlt dadurch fast so hell wie eine Supernova-Explosion eines Sterns, wenngleich nur für wenige Tage. Astronomen suchen bereits fieberhaft nach derartigen Ereignissen!

Anmerkungen:
1. Neutronensterne sind extrem kompakte Sternleichen, die am Lebensende massereicher Sterne entstehen, wenn der Kern der Sterne kollabiert, während ihre Hülle in einer Supernova-Explosion abstoßen wird. Der dabei gebildete Neutronenstern ist rund eineinhalb Mal so schwer wie unsere Sonne, hat dennoch aber nur einen Durchmesser von 20-30 Kilometern. In einigen Fällen entstehen in einem Doppelsternsystem bei aufeinander folgenden Supernovae zwei Neutronensterne, die umeinander kreisen und dabei Energie verlieren bis sie sich so nahe kommen, dass sie miteinander verschmelzen. Derartige Ereignisse sind nicht sehr häufig. Astronomen schätzen, dass in unserer Milchstraße etwa alle 100 000 Jahre zwei Neutronensterne verschmelzen.

2. Isotope sind Atome, deren Kern gleich viele Protonen aber unterschiedlich viele Neutronen aufweist.

Originalveröffentlichung:

Stephane Goriely, Andreas Bauswein and Hans-Thomas Janka, "r-process nucleosynthesis in dynamically ejected matter of neutron star mergers", 2011 ApJ 738 L32
(10.9.2011)
http://iopscience.iop.org/2041-8205/738/2/L32
Kontakt:
Dr. Hans-Thomas Janka
Max-Planck-Institut für Astrophysik, Garching
Tel.: +49 89 30000-2228
email: hjanka@mpa-garching.mpg.de
Dr. Andreas Bauswein
Max-Planck-Institut für Astrophysik, Garching
Tel.: +49 89 30000-2236
email: abauswein@mpa-garching.mpg.de
Dr. Hannelore Hämmerle
Pressesprecherin
Max-Planck-Institut für Astrophysik, Garching
Tel. +49 89 30000-3980
E-mail: hhaemmerle@mpa-garching.mpg.de
Original-Pressemeldung auf der MPA Webseite (incl. Bilder) :
http://www.mpa-garching.mpg.de/mpa/institute/news_archives/news1109
_janka/news1109_janka-de.html

Dr. Hannelore Hämmerle | Max-Planck-Institut
Weitere Informationen:
http://www.mpa-garching.mpg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt
22.05.2017 | Universität Basel

nachricht Neuer Ionisationsweg in molekularem Wasserstoff identifiziert
22.05.2017 | Max-Planck-Institut für Kernphysik

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Im Focus: Neuer Ionisationsweg in molekularem Wasserstoff identifiziert

„Wackelndes“ Molekül schüttelt Elektron ab

Wie reagiert molekularer Wasserstoff auf Beschuss mit intensiven ultrakurzen Laserpulsen? Forscher am Heidelberger MPI für Kernphysik haben neben bekannten...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: XENON1T: Das empfindlichste „Auge“ für Dunkle Materie

Gemeinsame Meldung des MPI für Kernphysik Heidelberg, der Albert-Ludwigs-Universität Freiburg, der Johannes Gutenberg-Universität Mainz und der Westfälischen Wilhelms-Universität Münster

„Das weltbeste Resultat zu Dunkler Materie – und wir stehen erst am Anfang!“ So freuen sich Wissenschaftler der XENON-Kollaboration über die ersten Ergebnisse...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

14. Dortmunder MST-Konferenz zeigt individualisierte Gesundheitslösungen mit Mikro- und Nanotechnik

22.05.2017 | Veranstaltungen

Branchentreff für IT-Entscheider - Rittal Praxistage IT in Stuttgart und München

22.05.2017 | Veranstaltungen

Flugzeugreifen – Ähnlich wie PKW-/LKW-Reifen oder ganz verschieden?

22.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Myrte schaltet „Anstandsdame“ in Krebszellen aus

22.05.2017 | Biowissenschaften Chemie

Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

22.05.2017 | Physik Astronomie

Wie sich das Wasser in der Umgebung von gelösten Molekülen verhält

22.05.2017 | Biowissenschaften Chemie