Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kosmische Kollisionen schmieden Gold

08.09.2011
Der Ort, an dem die schwersten chemischen Elemente im Universum wie Blei oder Gold entstehen, dürfte nun gefunden sein: In einer heftigen Kollision verschmelzende Neutronensterne sind die idealen Produktionsstätten.

Wissenschaftler am Max-Planck-Institut für Astrophysik (MPA) und dem Exzellenzcluster Universe sowie an der Freien Universität Brüssel (ULB) haben mit detaillierten numerischen Simulationen bestätigt, dass die relevanten Atomkernreaktionen tatsächlich dort ablaufen und dabei die schwersten Elemente in den beobachteten Häufigkeiten erzeugt werden.


Wo ist Gold entstanden? Lange war der kosmische Ursprungsort dieses seltenen Edelmetalls und anderer sehr schwerer chemischer Elemente unbekannt. Nun bestätigen neue theoretische Modelle die Vermutung, es könnte bei Kollisionen zwischen zwei Neutronensternen “geschmiedet” werden.
Fotos: Natürliche Goldklumpen aus Kalifornien und Australien; Natural History Museum, London

Viele schwere chemische Elemente entstehen durch das nukleare Brennen in Sternen. So fusioniert auch im Inneren unserer Sonne ständig Wasserstoff zu Helium und setzt dabei Energie frei. Massereichere Sterne als die Sonne schmieden danach aus Helium schwerere Elemente. Dieser Prozess funktioniert aber nur bis hin zum Eisen. Weil weiterer Energiegewinn in Fusionsreaktionen nicht möglich ist, können noch schwerere Atomkerne so nicht erzeugt werden. Sie bilden sich durch Einfang von ungeladenen Neutronen auf mittelschwere “Saatkerne”.

Zwei Prozesse spielen hierbei eine besondere Rolle: der langsame und der schnelle Neutroneneinfang. Der langsame Neutroneneinfang oder s-Prozess (vom englischen “slow” für langsam) läuft bei niedrigen Neutronendichten im Inneren von Sternen in deren späten Entwicklungsstadien ab. Der schnelle r-Prozess (vom englischen “rapid” für schnell) benötigt sehr hohe Neutronendichten. Die Physiker wissen, dass dieser r-Prozess für die Entstehung eines großen Teils der schwersten Elemente (mit Kernmassenzahlen A>80) verantwortlich ist, darunter Platin, Gold, Thorium und Plutonium (Abb. 1). Allerdings standen die Wissenschaftler vor der Frage, in welchen astrophysikalischen Objekten dieser Prozess ablaufen kann.

“Die Herkunft von etwa der Hälfte der schweren Elemente im Universum war bisher ein ungelöstes Rätsel”, sagt Hans-Thomas Janka, leitender Wissenschaftler am Max-Planck-Institut für Astrophysik (MPA) und Mitarbeiter im Exzellenzcluster Universe. “Lange dachte man, dass sie in Supernova-Explosionen produziert werden könnten, neuere Modelle gehen aber von dieser Theorie weg.”

Ein anderes mögliches Szenario bieten Neutronensterne (siehe Anm. 1), die in einem Doppelsystem am Ende einer Jahrmillionen dauernden Entwicklung in einer gigantischen Kollision miteinander verschmelzen. Wissenschaftler am MPA haben nun zum ersten Mal zusammen mit einem Kollegen von der Freien Universität Brüssel (ULB) die Vorgänge, die bei einer derartigen Verschmelzung ablaufen, in allen Schritten im Detail mit Computermodellen berechnet (Abb.2). Sie kombinierten dabei relativistische, hydrodynamische Simulationen des kosmischen Zusammenstoßes mit Berechnungen der Kernreaktionen von über 5000 Atomkernarten (chemische Elemente und deren Isotope (siehe Anm. 2)) in der bei der Sternkollision gewaltsam ausgeschleuderten Materie.

“Durch Gezeiten- und Druckkräfte werden innerhalb von tausendstel Sekunden nach der Verschmelzung der Neutronensterne einige Jupitermassen extrem heißer Materie ausgestoßen”, erklärt Andreas Bauswein, der die Simulationen am MPA durchführte. Wenn sich dieses sog. Plasma auf unter 10 Milliarden Grad abgekühlt hat, laufen die verschiedensten Kernreaktionen ab, unter anderem auch radioaktive Zerfälle, und ermöglichen die Bildung sehr schwerer Elemente. “Die schweren Elemente werden dabei in verschiedenen Reaktionsketten mehrfach prozessiert (`recycelt'), wobei Zerfälle, die zur Spaltung superschwerer Nuklide führen, eine entscheidende Rolle spielen. Dadurch hängt die endgültige Häufigkeitsverteilung der entstandenen Elemente nur wenig von den Ausgangsbedingungen des Modells ab”, fügt Stephane Goriely hinzu, der ULB-Wissenschaftler und nukleare Astrophysiker des Teams (siehe auch Abb. 3). Dies passt gut bereits länger gehegten Vermutungen, dass nur die Reaktionseigenschaften der beteiligten Atomkerne ausschlaggebend für die produzierte Elementverteilung sein sollten. Nur so lässt sich verstehen, warum in allen untersuchten Sternen wie auch im Sonnensystem nahezu identische relative Häufigkeiten der schweren r-Prozess-Elemente beobachtet werden.

Die Simulationen zeigten, dass die Häufigkeitsverteilung der schwersten Elemente (mit Massenzahlen A>140) sehr gut mit der in unserem Sonnensystem beobachteten übereinstimmt. Kombiniert man das Ergebnis der Modellrechnungen mit der geschätzten Zahl von Neutronensternkollisionen, die in der Milchstraße stattgefunden haben, so bestätigt sich, dass solche Ereignisse tatsächlich die Hauptquellen der schwersten chemischen Elemente im Universum sein können.

Um die theoretischen Vorhersagen weiter zu verfeinern, sind neue Studien geplant, sowohl zusätzliche Computersimulationen, die die physikalischen Prozesse noch genauer nachbilden, als auch Beobachtungskampagnen, um die frisch erzeugten schweren Elemente zum ersten Mal direkt am Ort ihres Entstehens nachzuweisen. Durch den radioaktiven Zerfall der superschweren Atomkerne wird das ausgeschleuderte Material nämlich stark geheizt und erstrahlt dadurch fast so hell wie eine Supernova-Explosion eines Sterns, wenngleich nur für wenige Tage. Astronomen suchen bereits fieberhaft nach derartigen Ereignissen!

Anmerkungen:
1. Neutronensterne sind extrem kompakte Sternleichen, die am Lebensende massereicher Sterne entstehen, wenn der Kern der Sterne kollabiert, während ihre Hülle in einer Supernova-Explosion abstoßen wird. Der dabei gebildete Neutronenstern ist rund eineinhalb Mal so schwer wie unsere Sonne, hat dennoch aber nur einen Durchmesser von 20-30 Kilometern. In einigen Fällen entstehen in einem Doppelsternsystem bei aufeinander folgenden Supernovae zwei Neutronensterne, die umeinander kreisen und dabei Energie verlieren bis sie sich so nahe kommen, dass sie miteinander verschmelzen. Derartige Ereignisse sind nicht sehr häufig. Astronomen schätzen, dass in unserer Milchstraße etwa alle 100 000 Jahre zwei Neutronensterne verschmelzen.

2. Isotope sind Atome, deren Kern gleich viele Protonen aber unterschiedlich viele Neutronen aufweist.

Originalveröffentlichung:

Stephane Goriely, Andreas Bauswein and Hans-Thomas Janka, "r-process nucleosynthesis in dynamically ejected matter of neutron star mergers", 2011 ApJ 738 L32
(10.9.2011)
http://iopscience.iop.org/2041-8205/738/2/L32
Kontakt:
Dr. Hans-Thomas Janka
Max-Planck-Institut für Astrophysik, Garching
Tel.: +49 89 30000-2228
email: hjanka@mpa-garching.mpg.de
Dr. Andreas Bauswein
Max-Planck-Institut für Astrophysik, Garching
Tel.: +49 89 30000-2236
email: abauswein@mpa-garching.mpg.de
Dr. Hannelore Hämmerle
Pressesprecherin
Max-Planck-Institut für Astrophysik, Garching
Tel. +49 89 30000-3980
E-mail: hhaemmerle@mpa-garching.mpg.de
Original-Pressemeldung auf der MPA Webseite (incl. Bilder) :
http://www.mpa-garching.mpg.de/mpa/institute/news_archives/news1109
_janka/news1109_janka-de.html

Dr. Hannelore Hämmerle | Max-Planck-Institut
Weitere Informationen:
http://www.mpa-garching.mpg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Proteintransport - Stau in der Zelle
24.03.2017 | Ludwig-Maximilians-Universität München

nachricht Neuartige Halbleiter-Membran-Laser
22.03.2017 | Universität Stuttgart

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise