Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kosmische Kollision in bisher ungeahnten Ausmaßen

02.09.2011
Internationales Forscherteam untersucht den entfernten Galaxienhaufen Abell 2744

Die größte bisher bekannte kosmische Kollision des Universums hat sich in einem entfernten Galaxienhaufen mit dem Namen Abell 2744 abgespielt. Das hat ein internationales Team von Wissenschaftlern herausgefunden, als es die Trümmer dieses Zusammenpralls untersucht hat. Zum Einsatz kamen neuartige Forschungsmethoden, die am Institut für Theoretische Astrophysik der Universität Heidelberg entwickelt wurden.


Die Aufnahme zeigt den Galaxienhaufen Abell 2744. Die Abbildung kombiniert Beobachtungen im sichtbaren Licht mit den rötlich dargestellten Beobachtungen des Röntgensatelliten Chandra und den bläulich eingefärbten Wolken Dunkler Materie. Die Besonderheiten dieses Systems werden hierbei gut sichtbar, zum Beispiel ein Klumpen Dunkler Materie ohne jegliche Sterne oder Gas (nordwestlich) sowie ein Klumpen von Galaxien und Dunkler Materie, aber ohne Gas (westlich). Die Skala gibt die Entfernung von 250.000 Parsec an, was etwa dem neunfachen Durchmesser des sichtbaren Teils unserer Milchstraße entspricht. In der Astronomie sind die Richtungen Osten und Westen „vertauscht“, wie dies in den Richtungsanzeigen unten rechts im Bild deutlich wird. Bildquelle: NASA, ESA, ESO, CXC, J. Merten (Heidelberg/Bologna) & D. Coe (STScI)

Mit ihnen war es möglich, den Ablauf über einen Zeitraum von einigen hundert Millionen Jahren nachzustellen und damit zu verstehen, wie sich großräumige Strukturen im Universum entwickeln und dabei verschiedene Arten von Materie miteinander in Wechselwirkung treten. An der Kollaboration waren Forscher aus Brasilien, Deutschland, Israel, Italien, Kanada, Schottland, Spanien, Taiwan und den USA beteiligt.

Die Wissenschaftler haben den Galaxienhaufen Abell 2744 mit hochleistungsfähigen Teleskopen so vielfältig wie nie zuvor beobachtet. Dazu wurden unter anderem das Very Large Telescope (VLT) der Europäischen Südsternwarte (ESO) in Chile, das Japanese Subaru Telescope auf Hawaii sowie die Weltraumteleskope Hubble und Chandra genutzt. Mit den bei diesen Beobachtungen gewonnenen Daten konnte das Forscherteam unter Federführung des Heidelberger Astrophysikers Dr. Julian Merten drei wesentliche Komponenten von Galaxienhaufen – Galaxien und ihre Sterne, intergalaktisches Gas sowie Dunkle Materie – untersuchen.

Jede einzelne der insgesamt etwa 1.000 Galaxien von Abell 2744 enthält viele Milliarden Sterne. Dennoch macht diese „sichtbare“ Materie nur etwa fünf Prozent der gesamten Masse des Galaxienhaufens aus. Wie Dr. Merten erläutert, „schwimmen“ die Galaxien in einem diffus zwischen ihnen verteilten Gas. Dieses „intergalaktische Gas“, das zu 20 Prozent der Gesamtmasse beiträgt, wurde durch die Wirkung der Gravitationskräfte im Galaxienhaufen derart aufgeheizt, dass es vor allem Röntgenstrahlen aussendet. Die übrigen 75 Prozent und damit der größte Teil der Masse des Galaxienhaufens besteht aus der mysteriösen „Dunklen Materie“.

Um nun die Vorgänge in Abell 2744 zu verstehen, haben die Forscher versucht, die Verteilung dieser drei Bestandteile möglichst genau zu bestimmen. Während eine solche Bestimmung für Galaxien und das intergalaktische Gas relativ leicht gelingt, ist dies im Fall der Dunklen Materie wesentlich schwieriger. Sie sendet kein Licht aus, sondern macht sich nur durch ihre Anziehungskraft bemerkbar. Julian Merten hat während seiner Arbeit als Doktorand an der Heidelberger Graduiertenschule für Fundamentale Physik jedoch spezielle Methoden entwickelt, um mit Hilfe des Gravitationslinseneffekts die Verteilung der Dunklen Materie zu messen.

Von Bedeutung sind dabei Lichtstrahlen, die von weit hinter Abell 2744 liegenden Galaxien ausgesandt werden. Wenn sie den Galaxienhaufen durchkreuzen, wird die Anziehungskraft der ungleichmäßig verteilten Dunklen Materie spürbar. „Die Lichtstrahlen werden dabei mehr oder weniger stark ,verbogen‘, so dass die Bilder der Hintergrundgalaxien auf charakteristische Weise verzerrt erscheinen“, erläutert Dr. Merten. „Wenn wir diese Verzerrung für eine Vielzahl von Hintergrundgalaxien analysieren, so kann daraus eine Art Landkarte der Verteilung Dunkler Materie erstellt werden.“

Nach dem überraschenden Ergebnis der Analyse von Abell 2744 handelt es sich dabei um ein System aus mindestens vier einzelnen Galaxienhaufen, die über einen Zeitraum von etwa 350 Millionen Jahren aufeinander geprallt sein müssen. „Dabei hat der Zusammenprall, der offenbar das heiße Gas und die Dunkle Materie voneinander getrennt hat, zu einer ungewöhnlichen und faszinierenden Verteilung der drei Materiearten geführt“, betont Dr. Merten. So fanden die Wissenschaftler zum Beispiel im Nordwesten ein Gebiet, in dem die Dunkle Materie auf ungewöhnliche Art und Weise von den anderen Komponenten getrennt wurde. So eilt das heiße Gas in ungeahnt großem Abstand der Dunklen Materie voraus, und auch die Galaxien scheinen nicht mit der Position der Dunklen Materie überein zu stimmen. Im Westen lässt sich ein Bereich ausmachen, der zwar Dunkle Materie und zugehörige Galaxien enthält, aber keinerlei heißes Gas. „Es scheint so, dass dieses Gas bei der Kollision komplett im Zentralbereich des Haufens abgestreift und dort zurückgelassen wurde“, sagt der Heidelberger Wissenschaftler. Wegen der Vielzahl ungewöhnlicher und teilweise völlig unverstandener Phänomene haben die Forscher den Galaxienhaufen Abell 2744 „Pandoras Galaxienhaufen“ getauft.

Zu den Forschungsergebnissen wird eine Veröffentlichung mit dem Titel „Creation of Cosmic Structure in the Complex Galaxy Cluster Merger Abell 2744“ in der Fachzeitschrift „Monthly Notices of the Royal Astronomical Society“ erscheinen. Preprint: http://arxiv.org/abs/1103.2772.

Das Institut für Theoretische Astrophysik ist Teil des Zentrums für Astronomie der Universität Heidelberg (ZAH).

Kontakt:
Dr. Julian Merten
Zentrum für Astronomie der Universität Heidelberg (ZAH)
Institut für Theoretische Astrophysik
Telefon (06221) 54-8987
jmerten@uni-heidelberg.de
Kommunikation und Marketing
Pressestelle, Telefon (06221) 54-2311
presse@rektorat.uni-heidelberg.de

Marietta Fuhrmann-Koch | idw
Weitere Informationen:
http://www.uni-heidelberg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Eine Extra-Sekunde zum neuen Jahr
08.12.2016 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht Heimcomputer entdecken rekordverdächtiges Pulsar-Neutronenstern-System
08.12.2016 | Max-Planck-Institut für Radioastronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einzelne Proteine bei der Arbeit beobachten

08.12.2016 | Biowissenschaften Chemie

Intelligente Filter für innovative Leichtbaukonstruktionen

08.12.2016 | Messenachrichten

Seminar: Ströme und Spannungen bedarfsgerecht schalten!

08.12.2016 | Seminare Workshops