Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kontroverse geklärt: Warum zwei Isolatoren gemeinsam Strom leiten können

04.07.2012
Wie kann es sein, dass zwei Materialien, die keinen Strom leiten, eine elektrisch leitende Schicht bilden, wenn man sie miteinander verbindet?
Seit Entdeckung dieses Effekts 2004 haben Forschende verschiedene Ansätze entwickelt, um diese Frage zu beantworten. Nun hat ein internationales Team unter der Leitung von Forschenden des Paul Scherrer Instituts die Kontroverse wohl entschieden.

Sie haben gezeigt, dass es die Kombination der Eigenschaften der beiden Materialien ist, die den Effekt erzeugt und damit die Vorstellung widerlegt, dass sich an der Grenzfläche die Materialien vermischen und ein neues leitendes Material bilden. Die untersuchten Materialien sind sogenannte Perowskite – Angehörige einer grossen Klasse von Materialien mit interessanten elektrischen oder magnetischen Eigenschaften, die eine wesentliche Rolle für zukünftige elektronische Geräte spielen dürften. Die Ergebnisse wurden im Fachjournal Nature Communications veröffentlicht.

Im Jahr 2004 entdeckten Forscher etwas Erstaunliches: verbindet man die beiden Substanzen SrTiO3 und LaAlO3, die beide selbst keinen Strom leiten, bildet sich an der Grenzfläche eine dünner elektrisch leitender Bereich. Gleich entstanden mehrere Ansätze, die den Effekt erklären sollten, und zu andauernden Kontroversen führten. „Es gibt Konferenzen, auf denen sich die Mehrheit aller Beiträge mit diesem Effekt beschäftigen“ erzählt Mathilde Reinle-Schmitt, Forscherin am PSI und Erstautorin der hier vorgestellten Arbeit. Bis heute überlebt haben im Wesentlichen zwei Erklärungsansätze. Um Klarheit in die kontroversen Ansätze zu bringen haben Forschende des PSI mit Kollegen der Uni Genf entsprechende Experimente durchgeführt. Wichtige theoretische Einsichten zu diesen Experimenten haben Forscher der Université de Liège beigetragen.

Vermischung oder polare Katastrophe?

Die beiden untersuchten Substanzen sind komplex aufgebaute Oxide – sogenannte Perowskite – mit einer typischen Ebenenstruktur. In SrTiO3 wechseln sich Ebenen aus Strontiumoxid (SrO) mit solchen aus Titandioxid (TiO2) ab; in LaAlO3 sind es Ebenen von Lanthanoxid (LaO) und Aluminiumdioxid (AlO2). Dabei unterscheiden sich die beiden Substanzen in einem Punkt: in SrTiO3 sind beide Ebenen elektrisch neutral, in LaAlO3 sind sie abwechselnd positiv und negativ geladen. Die Kombination zweier solcher Materialien führt nach Ansicht einer Gruppe von Forschern zur Entstehung hochbeweglicher Elektronen an der Grenzfläche zwischen den beiden Materialien – Elektronen, die den elektrischen Strom transportieren und so das Material leitend machen. Aber erst wenn die LaAlO3-Schicht ausreichend dick ist. Sonst ist die Materialkombination ein Isolator. Dieser Ansatz ist als «polare Katastrophe» bekannt. Andere Forscher sind hingegen davon überzeugt, dass die Leitfähigkeit entsteht, weil bekanntermassen sich die beiden Substanzen an der Grenzfläche vermischen und das der Ursprung einer neuen, leitenden Substanz ist.

Das passende Experiment

Um die Kontroverse zu klären, wollten die Forschenden die Frage klären: «ist ein Gemisch der beiden Substanzen leitend?» Dazu Mathilde Reinle-Schmitt: «Wir haben wieder mit SrTiO3 als Unterlage angefangen und darauf Gemische von SrTiO3 und LaAlO3 in verschiedenen Mischverhältnissen und Schichtdicken aufgebracht und die Leitfähigkeit gemessen. Das Ergebnis war überraschend: für dünne Schichten des aufgetragenen Gemisches war das System ein Isolator, für dickere Schichten wurde die Grenzfläche leitend. Und zwar muss die Schicht umso dicker sein, je weniger LaAlO3 in dem Gemisch enthalten ist. Diese Ergebnisse entsprechen perfekt den Voraussagen der polaren Katastrophe», so Claudia Cancellieri, PSI-Forscherin und zweite Autorin des Artikels «es wäre sehr schwierig, diese Ergebnisse mit Hilfe der Vermischung zu erklären.»

Vielfältige Anwendungen in Sicht

Perowskite, zu denen die untersuchten Substanzen gehören, haben oft interessante elektrische und magnetische Eigenschaften, die zum Teil noch nie in anderen Materialien beobachtet worden sind. Eine weitere wichtige Besonderheit nennt Philip Willmott, Leiter der Arbeitsgruppe am PSI: «Im Gegensatz zu den heute genutzten Halbleitern, haben verschiedene Perowskite eine ähnliche Struktur und lassen sich so leicht zusammenfügen, so dass man leicht verschiedene Eigenschaften in einem Baustein kombinieren könnte – Supraleiter mit Materialien, die sehr empfindlich auf Magnetfelder reagieren oder solchen, mit denen man Substanzen in der Luft nachweisen kann.» Materialien, in denen der Strom nicht in alle drei Raumrichtungen fliessen kann, sondern in nur einer oder wie hier zwei sind auch ein aktuelles Forschungsthema, das zahlreiche Anwendungen erwarten lässt.
Über das PSI
Das Paul Scherrer Institut entwickelt, baut und betreibt grosse und komplexe Forschungsanlagen und stellt sie der nationalen und internationalen Forschungsgemeinde zur Verfügung. Eigene Forschungsschwerpunkte sind Materie und Material, Mensch und Gesundheit, sowie Energie und Umwelt. Mit 1500 Mitarbeitenden und einem Jahresbudget von rund 300 Mio. CHF ist es das grösste Forschungsinstitut der Schweiz.

Kontakt / Ansprechpartner

Prof. Philip Willmott, Labor für Synchrotronstrahlung – Kondensierte Materie;
Paul Scherrer Institut, 5232 Villigen PSI, Schweiz,
Telefon: +41 56 310 51 26; E-Mail: philip.willmott@psi.ch

Prof. Jean-Marc Triscone, DPMC, Université de Genève
24, quai Ernest-Ansermet, CH-1211 Genève 4,
Telefon: +41 22 379 66 55; E-Mail: Jean-Marc.Triscone@unige.ch

Prof. Philippe Ghosez, Université de Liège, Institut de Physique, B5a,
Allée du 6 août, 17, B-4000 Sart Tilman, Belgien,
Telefon: +32 43 66 36 11; E-Mail: Philippe.Ghosez@ulg.ac.be

Originalveröffentlichung

Tunable conductivity threshold at polar oxide interfaces
M.L. Reinle-Schmitt, C. Cancellieri, D. Li, D. Fontaine, M. Medarde, E. Pomjakushina, C.W. Schneider, S. Gariglio,
Ph. Ghosez, J.-M- Triscone, P.R. Willmott
Nature Communications:
DOI: http://dx.doi.org/10.1038/ncomms1936

Dagmar Baroke | idw
Weitere Informationen:
http://i.psi.ch/CgfW
http://www.psi.ch

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Kleinste Teilchen aus fernen Galaxien!
22.09.2017 | Bergische Universität Wuppertal

nachricht Tanzende Elektronen verlieren das Rennen
22.09.2017 | Universität Bielefeld

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie