Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kontrolliertes Wachstum von Nanodrähten

14.12.2010
Regensburger Physiker verbessern Standardmethoden durch Einsatz von Elektronenstrahllithographie und nasschemischem Ätzen – Veröffentlichung in „Nanotechnology“ – Einsatz bei der Herstellung von Nanodraht-basierten Bauelementen möglich

Nanodrähte sind sehr dünne, langgestreckte Objekte aus Metall, Halbmetall oder Verbindungshalbleiter. Aufgrund ihres geringen Durchmessers von ca. 100 Nanometern (nm) bzw. 0,1 Mikrometern (µm) und der verhältnismäßig großen Länge von bis zu 10 Mikrometer werden sie als „eindimensionale Strukturen“ bezeichnet. In den Bereichen der Elektronik und der Optik eröffnen sie ungeahnte Möglichkeiten.


A) Rasterelektronenmikroskop-Aufnahme eines Nanodraht-Feldes: Aufgrund der Vorstrukturierung des Substrates sind die Nanodrähte regelmäßig angeordnet. Die Pfeile links unten geben die Richtungen des vordefinierten quadratischen Feldes wieder. B) Nahaufnahme einiger Nanodrähte. Die Galliumtröpfchen, die als Katalysator des Nanodraht-Wachstums dienen, sind als Halbkugeln an den Spitzen der Nanodrähte erkennbar.
Foto: Universität Regensburg

Ob in Flachbildschirmen, in neuartigen Solarzellen oder als Bauelemente für elektronische Schaltkreise – Nanodrähte werden für eine ganze Reihe von Anwendungen erprobt. Sie erlauben es, elektronische Schaltungen kompakter zu bauen, als dies über traditionelle Verfahren möglich ist. Gerade Nanodrähte aus Verbindungshalbleitern besitzen dabei hervorragende Transporteigenschaften.

Bei entsprechenden Bedingungen wachsen Nanodrähte zudem ganz von selbst – bei einigen Stoffen begünstigt die Kristallstruktur das Wachstum. Bei anderen Substanzen muss man nachhelfen. So benutzt man zum Beispiel Einschnitte oder Löcher in Kristalloberflächen oder Nanoporen in Aluminiumoxid als „Gussformen“ für Metall-Nanodrähte. Halbleiter-Nanodrähte werden meist mithilfe eines Katalysators erzeugt. Der Katalysator begünstigt den Einbau der Atome in den Nanodraht und bestimmt unter anderem den Durchmesser des Nanodrahts. In allen Fällen sind Anwendungen aber dadurch eingeschränkt, dass Nanodrähte noch immer schwer zu handhaben sind. Dies bezieht sich zum Beispiel auf die exakte Position der Nanodrähte auf dem Substrat. Für den Einsatz in der Industrie besteht die Kunst darin, möglichst fehlerfreie Drähte von einheitlicher Dicke und Zusammensetzung zu produzieren.

Einem Forscherteam um Dr. Elisabeth Reiger in Kooperation mit Prof. Dr. Josef Zweck vom Institut für Experimentelle und Angewandte Physik der Universität Regensburg gelang es nun, eine Methode zur Kontrolle von Nanodrahtwachstum zu entwickeln. Zur Herstellung von Nanodrähten aus Galliumarsenid, einem Verbindungshalbleiter, wurden flüssige Gallium-Tröpfchen als Katalysator für das Nanodrahtwachstum verwendet. Dieses Verfahren ist seit 2008 bekannt und besitzt wesentliche Vorteile gegenüber Standardtechniken, bei denen Metalle und insbesondere Gold als Katalysatormaterial verwendet werden: So weisen die Galliumarsenid-Nanodrähte eine höhere Reinheit sowie eine – im Vergleich – einheitlichere Kristallstruktur auf. Durch eine Vorbehandlung des verwendeten Substrates konnten – im Gegensatz zu dem ursprünglichen Verfahren – gezielt dort Nanodrähte hergestellt werden, wo dies erwünscht war.

Von den Forschern wurden Siliciumdioxid-Schichten durch Elektronenstrahllithographie und nasschemischem Ätzen vorstrukturiert. Die so erzeugten Löcher mit einem Durchmesser von ca. 85 nm waren quadratisch angeordnet, wobei für einzelne Abschnitte der Lochabstand von 200 nm bis 2 µm variiert wurde. Bevorzugt an den geätzten Löchern bildeten sich Gallium-Tröpfchen; an diesen Stellen fand also Nanodrahtwachstum statt. Allerdings entwickelte sich nicht an jeder vordefinierten Stelle ein Nanodraht. Die durchschnittliche Erfolgsquote betrug etwa 20%. Die Forscher führten dies auf uneinheitliche Ätzprozesse zurück, durch die das Siliciumdioxid nicht immer vollständig aus den Löchern entfernt wurde.

Abhängig vom Lochabstand stellten die Wissenschaftler – bei identischen Wachstumsbedingungen – eine unterschiedliche Nanodrahtwachstumsrate fest. In Abschnitten mit einem Lochabstand von 200 nm bis 250 nm entstanden die längsten Nanodrähte mit einer Länge von 5 µm und einem typischen Durchmesser von 80 nm bis 100 nm. Bei größeren Lochabständen verringerte sich die durchschnittliche Länge der Nanodrähte. Diese Beobachtungen der Regensburger Wissenschaftler sind vor kurzem in der renommierten Fachzeitschrift „Nanotechnology“ erschienen (DOI: 10.1088/0957-4484/21/43/435601).

In den nächsten Monaten wird es darum gehen, das Verfahren zu verfeinern. So soll der Ätzprozess verbessert werden, um die Erfolgsquote des Nanodrahtwachstums deutlich zu erhöhen. Angestrebtes Ziel ist, an jedem vordefinierten Ort einen Nanodraht zu erzeugen. Die Beobachtungen zu den unterschiedlichen Wachstumsraten – abhängig vom Lochabstand – sollen zudem dabei helfen, den Wachstumsprozess der Nanodrähte besser zu verstehen. Durch eine Anpassung der Wachstumsbedingungen sollten beliebige Abstände zwischen den Nanodrähten realisierbar sein. Die so erzielte Kontrolle über den „Wachstumsort“ von Nanodrähten ist eine entscheidende Voraussetzung für die Herstellung von Nanodraht-basierten Bauelemente.

Die Ergebnisse sind wichtige Vorarbeiten für ein weiteres Nanodrahtprojekt an der Universität Regensburg, bei dem im Rahmen des Sonderforschungsbereichs (SFB 689) „Spinphänomene in reduzierten Dimensionen“ das Wachstum magnetischer Nanodraht-Strukturen erforscht wird. Es soll untersucht werden, welche Auswirkungen die spezielle Geometrie der Nanodrähte auf ihre magnetischen Eigenschaften hat.

Ansprechpartnerin für Medienvertreter:
Dr. Elisabeth Reiger
Universität Regensburg
Institut für Experimentelle und Angewandte Physik
Tel.: 0941 943-4233/2071
Elisabeth.Reiger@physik.uni-regensburg.de

Alexander Schlaak | idw
Weitere Informationen:
http://www.uni-regensburg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Topologische Isolatoren: Neuer Phasenübergang entdeckt
17.10.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Vorhersagen bestätigt: Schwere Elemente bei Neutronensternverschmelzungen nachgewiesen
17.10.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Topologische Isolatoren: Neuer Phasenübergang entdeckt

Physiker des HZB haben an BESSY II Materialien untersucht, die zu den topologischen Isolatoren gehören. Dabei entdeckten sie einen neuen Phasenübergang zwischen zwei unterschiedlichen topologischen Phasen. Eine dieser Phasen ist ferroelektrisch: das bedeutet, dass sich im Material spontan eine elektrische Polarisation ausbildet, die sich durch ein äußeres elektrisches Feld umschalten lässt. Dieses Ergebnis könnte neue Anwendungen wie das Schalten zwischen unterschiedlichen Leitfähigkeiten ermöglichen.

Topologische Isolatoren zeichnen sich dadurch aus, dass sie an ihren Oberflächen Strom sehr gut leiten, während sie im Innern Isolatoren sind. Zu dieser neuen...

Im Focus: Smarte Sensoren für effiziente Prozesse

Materialfehler im Endprodukt können in vielen Industriebereichen zu frühzeitigem Versagen führen und den sicheren Gebrauch der Erzeugnisse massiv beeinträchtigen. Eine Schlüsselrolle im Rahmen der Qualitätssicherung kommt daher intelligenten, zerstörungsfreien Sensorsystemen zu, die es erlauben, Bauteile schnell und kostengünstig zu prüfen, ohne das Material selbst zu beschädigen oder die Oberfläche zu verändern. Experten des Fraunhofer IZFP in Saarbrücken präsentieren vom 7. bis 10. November 2017 auf der Blechexpo in Stuttgart zwei Exponate, die eine schnelle, zuverlässige und automatisierte Materialcharakterisierung und Fehlerbestimmung ermöglichen (Halle 5, Stand 5306).

Bei Verwendung zeitaufwändiger zerstörender Prüfverfahren zieht die Qualitätsprüfung durch die Beschädigung oder Zerstörung der Produkte enorme Kosten nach...

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Dezember 2017

17.10.2017 | Veranstaltungen

Intelligente Messmethoden für die Bauwerkssicherheit: Fachtagung „Messen im Bauwesen“ am 14.11.2017

17.10.2017 | Veranstaltungen

Meeresbiologe Mark E. Hay zu Gast bei den "Noblen Gesprächen" am Beutenberg Campus in Jena

16.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Latest News

Plant escape from waterlogging

17.10.2017 | Life Sciences

Study suggests oysters offer hot spot for reducing nutrient pollution

17.10.2017 | Life Sciences

Breaking: the first light from two neutron stars merging

17.10.2017 | Physics and Astronomy