Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kontrolliertes Wachstum von Nanodrähten

14.12.2010
Regensburger Physiker verbessern Standardmethoden durch Einsatz von Elektronenstrahllithographie und nasschemischem Ätzen – Veröffentlichung in „Nanotechnology“ – Einsatz bei der Herstellung von Nanodraht-basierten Bauelementen möglich

Nanodrähte sind sehr dünne, langgestreckte Objekte aus Metall, Halbmetall oder Verbindungshalbleiter. Aufgrund ihres geringen Durchmessers von ca. 100 Nanometern (nm) bzw. 0,1 Mikrometern (µm) und der verhältnismäßig großen Länge von bis zu 10 Mikrometer werden sie als „eindimensionale Strukturen“ bezeichnet. In den Bereichen der Elektronik und der Optik eröffnen sie ungeahnte Möglichkeiten.


A) Rasterelektronenmikroskop-Aufnahme eines Nanodraht-Feldes: Aufgrund der Vorstrukturierung des Substrates sind die Nanodrähte regelmäßig angeordnet. Die Pfeile links unten geben die Richtungen des vordefinierten quadratischen Feldes wieder. B) Nahaufnahme einiger Nanodrähte. Die Galliumtröpfchen, die als Katalysator des Nanodraht-Wachstums dienen, sind als Halbkugeln an den Spitzen der Nanodrähte erkennbar.
Foto: Universität Regensburg

Ob in Flachbildschirmen, in neuartigen Solarzellen oder als Bauelemente für elektronische Schaltkreise – Nanodrähte werden für eine ganze Reihe von Anwendungen erprobt. Sie erlauben es, elektronische Schaltungen kompakter zu bauen, als dies über traditionelle Verfahren möglich ist. Gerade Nanodrähte aus Verbindungshalbleitern besitzen dabei hervorragende Transporteigenschaften.

Bei entsprechenden Bedingungen wachsen Nanodrähte zudem ganz von selbst – bei einigen Stoffen begünstigt die Kristallstruktur das Wachstum. Bei anderen Substanzen muss man nachhelfen. So benutzt man zum Beispiel Einschnitte oder Löcher in Kristalloberflächen oder Nanoporen in Aluminiumoxid als „Gussformen“ für Metall-Nanodrähte. Halbleiter-Nanodrähte werden meist mithilfe eines Katalysators erzeugt. Der Katalysator begünstigt den Einbau der Atome in den Nanodraht und bestimmt unter anderem den Durchmesser des Nanodrahts. In allen Fällen sind Anwendungen aber dadurch eingeschränkt, dass Nanodrähte noch immer schwer zu handhaben sind. Dies bezieht sich zum Beispiel auf die exakte Position der Nanodrähte auf dem Substrat. Für den Einsatz in der Industrie besteht die Kunst darin, möglichst fehlerfreie Drähte von einheitlicher Dicke und Zusammensetzung zu produzieren.

Einem Forscherteam um Dr. Elisabeth Reiger in Kooperation mit Prof. Dr. Josef Zweck vom Institut für Experimentelle und Angewandte Physik der Universität Regensburg gelang es nun, eine Methode zur Kontrolle von Nanodrahtwachstum zu entwickeln. Zur Herstellung von Nanodrähten aus Galliumarsenid, einem Verbindungshalbleiter, wurden flüssige Gallium-Tröpfchen als Katalysator für das Nanodrahtwachstum verwendet. Dieses Verfahren ist seit 2008 bekannt und besitzt wesentliche Vorteile gegenüber Standardtechniken, bei denen Metalle und insbesondere Gold als Katalysatormaterial verwendet werden: So weisen die Galliumarsenid-Nanodrähte eine höhere Reinheit sowie eine – im Vergleich – einheitlichere Kristallstruktur auf. Durch eine Vorbehandlung des verwendeten Substrates konnten – im Gegensatz zu dem ursprünglichen Verfahren – gezielt dort Nanodrähte hergestellt werden, wo dies erwünscht war.

Von den Forschern wurden Siliciumdioxid-Schichten durch Elektronenstrahllithographie und nasschemischem Ätzen vorstrukturiert. Die so erzeugten Löcher mit einem Durchmesser von ca. 85 nm waren quadratisch angeordnet, wobei für einzelne Abschnitte der Lochabstand von 200 nm bis 2 µm variiert wurde. Bevorzugt an den geätzten Löchern bildeten sich Gallium-Tröpfchen; an diesen Stellen fand also Nanodrahtwachstum statt. Allerdings entwickelte sich nicht an jeder vordefinierten Stelle ein Nanodraht. Die durchschnittliche Erfolgsquote betrug etwa 20%. Die Forscher führten dies auf uneinheitliche Ätzprozesse zurück, durch die das Siliciumdioxid nicht immer vollständig aus den Löchern entfernt wurde.

Abhängig vom Lochabstand stellten die Wissenschaftler – bei identischen Wachstumsbedingungen – eine unterschiedliche Nanodrahtwachstumsrate fest. In Abschnitten mit einem Lochabstand von 200 nm bis 250 nm entstanden die längsten Nanodrähte mit einer Länge von 5 µm und einem typischen Durchmesser von 80 nm bis 100 nm. Bei größeren Lochabständen verringerte sich die durchschnittliche Länge der Nanodrähte. Diese Beobachtungen der Regensburger Wissenschaftler sind vor kurzem in der renommierten Fachzeitschrift „Nanotechnology“ erschienen (DOI: 10.1088/0957-4484/21/43/435601).

In den nächsten Monaten wird es darum gehen, das Verfahren zu verfeinern. So soll der Ätzprozess verbessert werden, um die Erfolgsquote des Nanodrahtwachstums deutlich zu erhöhen. Angestrebtes Ziel ist, an jedem vordefinierten Ort einen Nanodraht zu erzeugen. Die Beobachtungen zu den unterschiedlichen Wachstumsraten – abhängig vom Lochabstand – sollen zudem dabei helfen, den Wachstumsprozess der Nanodrähte besser zu verstehen. Durch eine Anpassung der Wachstumsbedingungen sollten beliebige Abstände zwischen den Nanodrähten realisierbar sein. Die so erzielte Kontrolle über den „Wachstumsort“ von Nanodrähten ist eine entscheidende Voraussetzung für die Herstellung von Nanodraht-basierten Bauelemente.

Die Ergebnisse sind wichtige Vorarbeiten für ein weiteres Nanodrahtprojekt an der Universität Regensburg, bei dem im Rahmen des Sonderforschungsbereichs (SFB 689) „Spinphänomene in reduzierten Dimensionen“ das Wachstum magnetischer Nanodraht-Strukturen erforscht wird. Es soll untersucht werden, welche Auswirkungen die spezielle Geometrie der Nanodrähte auf ihre magnetischen Eigenschaften hat.

Ansprechpartnerin für Medienvertreter:
Dr. Elisabeth Reiger
Universität Regensburg
Institut für Experimentelle und Angewandte Physik
Tel.: 0941 943-4233/2071
Elisabeth.Reiger@physik.uni-regensburg.de

Alexander Schlaak | idw
Weitere Informationen:
http://www.uni-regensburg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion
23.06.2017 | Max-Planck-Institut für Astrophysik

nachricht Individualisierte Faserkomponenten für den Weltmarkt
22.06.2017 | Laser Zentrum Hannover e.V. (LZH)

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften