Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

„Kondo-Effekt“: Göttinger Physiker untersuchen Wechselwirkung von Elektronen

24.01.2011
Magnetische Atome unter der atomaren Lupe

Wissenschaftlern der Universität Göttingen ist mit einer neuen Methode ein wichtiger Schritt zum besseren Verständnis des sogenannten "Kondo-Effekts" gelungen. Die Untersuchungen fanden am IV. Physikalischen Institut und am Institut für Theoretische Physik im Rahmen des Sonderforschungsbereichs 602 „Komplexe Strukturen in kondensierter Materie“ statt. Die Ergebnisse sind in der Online-Ausgabe der renommierten Fachzeitschrift Nature Physics erschienen.

Die physikalischen Eigenschaften aller Materialien, insbesondere der magnetischen, werden maßgeblich durch die komplexen Wechselwirkungen von Elektronen untereinander bestimmt. Das einfachste System, in dem sich solche Eigenschaften beobachten lassen, sind einzelne magnetische Atome in einem Metall. Hier kann unterhalb einer bestimmten Temperatur der sogenannte Kondo-Effekt auftreten, der das Verhalten der Elektronen zueinander verändert. Wissenschaftlern der Universität Göttingen ist nun mit einer neuen Methode ein wichtiger Schritt zum besseren Verständnis dieses Phänomens gelungen.

Die Untersuchungen fanden am IV. Physikalischen Institut und am Institut für Theoretische Physik im Rahmen des Sonderforschungsbereichs 602 „Komplexe Strukturen in kondensierter Materie“ statt. Die Ergebnisse sind in der Online-Ausgabe der renommierten Fachzeitschrift Nature Physics erschienen.

Die Göttinger Wissenschaftler verwendeten bei ihren Untersuchungen Kobalt- und Eisenatome, die sie mehrere atomare Lagen tief unter einer Kupferoberfläche vergruben. Prallen die Elektronen auf ein Fremdatom, werden sie von diesem gestreut. Dadurch entsteht ein sogenanntes stehendes Wellenmuster, das die Forscher mit Hilfe des in Göttingen entwickelten Tieftemperatur-Rastertunnelmikroskops sichtbar machen konnten. „Das Rastertunnelmikroskop wurde bislang nur zur Analyse von Oberflächen genutzt. Wir haben erstmals damit ein Kondosystem unterhalb einer Oberfläche untersucht“, erläutert Dr. Martin Wenderoth vom IV. Physikalischen Institut.

Die Göttinger Wissenschaftler analysierten in ihrer jetzigen Studie die Streuung durch einzelne Atome. Bei zukünftigen Versuchen wollen sie die Anzahl der Atome schrittweise erhöhen und mit dieser Methode deren Wechselwirkungen und die daraus entstehenden Wellenmuster untersuchen. „Wir erhoffen uns davon eine neue Möglichkeit zur Charakterisierung von Nanostrukturen“, so Dr. Wenderoth.

Originalveröffentlichung: Henning Prüser et al. Long-range Kondo signature of a single magnetic impurity. Nature Physics. DOI: 10.1038/NPHYS1876 (2011).

Kontaktadresse:
Dr. Martin Wenderoth
Georg-August-Universität Göttingen
Fakultät für Physik – IV. Physikalisches Institut
Friedrich-Hund-Platz 1, 37077 Göttingen
Telefon (0551) 39-9367 oder -4536
E-Mail: wenderoth@ph4.physik.uni-goettingen.de

Dr. Bernd Ebeling | idw
Weitere Informationen:
http://www.uni-goettingen.de/de/3240.html?cid=3753
http://www.ph4.physik.uni-goettingen.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Vorstoß ins Innere der Atome
23.02.2018 | Max-Planck-Institut für Quantenoptik

nachricht Quanten-Wiederkehr: Alles wird wieder wie früher
23.02.2018 | Technische Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics