Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die komplette Klaviatur der Pulsare

22.04.2010
Kombination der neuen Radioanlage LOFAR mit zwei Großteleskopen bringt wichtige Erkenntnisse über die Strahlung von Neutronensternen

Mit einer einzigartigen Kombination mehrerer Teleskope haben Astronomen fast die gesamte Klaviatur des Radiospektrums ausgeschöpft und sechs Pulsare gleichzeitig über den Wellenlängenbereich von 3,5 Zentimetern bis zu sieben Metern beobachtet. Das ermöglicht einen beispiellosen Blick darauf, wie Pulsare ihre Energie abstrahlen. Für diesen "Weltrekord" nutzte das internationale Team, darunter auch Forscher aus dem Bonner Max-Planck-Institut für Radioastronomie, das neue europäische Niederfrequenz-Radioteleskop LOFAR in Verbindung mit zwei der weltweit größten Radioanlagen, der 100-Meter-Antenne bei Effelsberg und dem 76-Meter-Lovell-Teleskop in Großbritannien.


Intensität der Radiosignale des Pulsars PSR B1133+16 als Funktion der Zeit in vier über einen großen Abstand getrennten Bereichen. Die Signalstruktur zeigt den Verlauf der Magnetfeldlinien oberhalb des magnetischen Pols. Bild: Aris Karastergiou, University of Oxford

Pulsare sind schnell rotierende Neutronensterne, die bei der Explosion von massereichen Sonnen entstehen. Diese kompakten Sternleichen besitzen bei einem Durchmesser von nur 20 Kilometern mehr Masse als unsere Sonne. Entlang seiner Magnetpole gibt ein Pulsar gebündelte Radiostrahlung ab, die sich über einen großen Wellenlängenbereich hinweg beobachten lässt. Weil die magnetische Achse gegen die Rotationsachse geneigt ist, überstreicht der Strahlenkegel einmal pro Umdrehung die Erde, das heißt: Der Stern blinkt regelmäßig wie ein Leuchtturm.

In den 40 Jahren seit der Entdeckung der ersten Pulsare - heute kennt man rund 2000 dieser Objekte - haben die Astronomen den Leuchtturm-Mechanismus immer besser verstanden. Sie glauben, dass die Radiostrahlung bei unterschiedlichen Wellenlängen in verschiedenen Höhen über der Oberfläche innerhalb des starken Pulsarmagnetfelds entsteht. Die Beobachtung der Strahlung liefert somit einen Schnitt durch diese Magnetosphäre, Simultanmessungen ermöglichen eine Tomografie der Pulsaratmosphäre.

Geladene Teilchen werden entlang der magnetischen Feldlinien des Neutronensterns beschleunigt und erzeugen die beobachtete Radiostrahlung (Synchrotronstrahlung). Dabei werden die Feldlinien immer stärker auseinandergespreizt, je weiter man sich von der Oberfläche entfernt. Beobachtungen bestätigen dieses Szenario: Sie zeigen, dass die Radiopulse von einigen Pulsaren mit zunehmender Wellenlänge zeitlich auseinander gezogen werden. Die Form der gemessenen Radiosignale ändert sich erheblich als Funktion der Wellenlänge und zeichnet das Ausspreizen der magnetischen Feldlinien über der Pulsaroberfläche direkt nach.

Mit einem einzelnen Radioteleskop lässt sich die Pulsarstrahlung zu einer bestimmten Zeit nur in einem relativ begrenzten Wellenlängenbereich beobachten. Durch die Verbindung der beiden klassischen großen Radioteleskope bei Effelsberg und Jodrell Bank für Zentimeter-Wellenlängen mit dem neuartigen europäischen "LOw Frequency ARay" (LOFAR), einem Teleskopnetzwerk für Meter-Wellenlängen, konnten die Astronomen nun sechs Pulsare über einen Bereich von nahezu acht Oktaven simultan untersuchen. "Verglichen mit der Musik, entspricht das dem kompletten Tonumfang eines Klaviers", sagt Jason Hessels vom niederländischen Institut ASTRON. "Dadurch erhalten wir eine Reihe von Momentaufnahmen der Pulsarstrahlung aus unterschiedlichen Höhen oberhalb der magnetischen Pole."

Der Schlüssel zu diesen Messungen liegt in der Nutzung des neuen LOFAR-Teleskops. Es besteht aus Tausenden von Einzelantennen, zusammengefasst in einer Reihe von Feldstationen und der Zentrale nahe Exloo in den Niederlanden. Insgesamt verteilen sich die Stationen des LOFAR-Netzwerks über Hunderte von Kilometern, neben den Niederlanden stehen sie auch in Deutschland, Frankreich, Großbritannien und Schweden.

Die empfangenen Daten werden über schnelle Glasfaser-Leitungen zusammengeführt und an einem BlueGene/P-Supercomputer und weiteren Netzwerkcomputern im Zentrum für Informationstechnologie der Universität Groningen analysiert. Das LOFAR-Netzwerk wird von ASTRON im niederländischen Dwingeloo betrieben. Zurzeit wird LOFAR für den astronomischen Routine-Messbetrieb vorbereitet.

Die erste internationale Antennenstation steht in unmittelbarer Nähe des 100-Meter-Radioteleskops bei Bad Münstereifel-Effelsberg und gehört zum Bonner Max-Planck-Institut für Radioastronomie. Michael Kramer, Direktor am Institut, freut sich über die deutliche Erweiterung des Wellenlängenbereichs. "Unsere Beobachtungen zeigen, dass LOFAR die bereits existierenden Radioteleskope in Europa, etwa das 100-Meter-Teleskop, in beinahe perfekter Weise ergänzt."

Das Hauptziel der vorliegenden Beobachtungen besteht zwar darin, den Mechanismus der Pulserzeugung bei Pulsaren besser zu verstehen. Nebenbei gewinnt man aber auch Erkenntnisse, die über die Analyse der Pulsare selbst hinausgehen. "Die Messungen ermöglichen uns die Untersuchung des interstellaren Gases, das zwischen uns und dem Pulsar liegt", sagt Ben Stappers von der Universität Manchester.

LOFAR wird sich über mehr als 1000 Kilometer erstrecken. Nach seiner Fertigstellung im Jahr 2011 soll es das leistungsfähigste Radioteleskop der Erde sein; mit ihm lässt sich das Universum zwischen einem und 30 Metern erforschen - bei den größten, vom Boden zugänglichen Wellenlängen.

Weitere Informationen erhalten Sie von:

Dr. Norbert Junkes (Presse- und Öffentlichkeitsarbeit)
Max-Planck-Institut für Radioastronomie, Bonn
Tel.: +49 228 525-399
E-Mail: njunkes@mpifr.de
Prof. Dr. Michael Kramer
Max-Planck-Institut für Radioastronomie, Bonn
Tel.: +49 228 525-278
E-Mail: mkramer@mpifr.de
Dr. Kosmas Lazaridis
Max-Planck-Institut für Radioastronomie, Bonn
Tel.: +49 228 525-481
E-Mail: klazarid@mpifr.de

Barbara Abrell | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Neuartige Halbleiter-Membran-Laser
22.03.2017 | Universität Stuttgart

nachricht Seltene Erden: Wasserabweisend erst durch Altern
22.03.2017 | Universität Basel

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Besser lernen dank Zink?

23.03.2017 | Biowissenschaften Chemie

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungsnachrichten

Innenraum-Ortung für dynamische Umgebungen

23.03.2017 | Architektur Bauwesen