Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kompakte Beschleuniger: Mit Terahertz-Licht in die Materie blicken

07.07.2017

In Materialforschung, Chemie, Biologie und Medizin bestimmen die chemischen Bindungen und insbesondere deren Dynamik die Eigenschaften eines Systems. Und diese lassen sich sehr genau mit Terahertzstrahlung und kurzen Pulsen untersuchen. Der Beschleuniger FLUTE am KIT wird neue Beschleunigertechnologien für kompakte und leistungsfähige Terahertz-Quellen als effiziente Werkzeuge für Forschung und Anwendung entwickeln.

„Die Wissenschaftlerinnen und Wissenschaftler am KIT zeichnet die Befähigung aus, kreative Ideen zu entwickeln und neue Felder zu erschließen“, unterstreicht der Präsident des KIT, Professor Holger Hanselka. „Mit dem kompakten Beschleuniger FLUTE öffnen wir am KIT die Tür zu einem neuen Werkzeug, das Biologen, Chemiker und Materialforscher zu herausragenden Erkenntnissen führen wird.“


Im Linearbeschleuniger FLUTE werden Elektronenwolken beschleunigt, um Terahertzstrahlen zu erzeugen.

Bild KIT


Elektronenwolken kompakt zu beschleunigen und damit Terahertzstrahlung für Lebens- und Materialwissenschaften nutzbar zu machen, ist ein Ziel von FLUTE.

(Bild KIT)

Das Ferninfrarot Linac- und Test-Experiment FLUTE am KIT ist eine Entwicklungsplattform für die Beschleunigerphysik. An ihr werden Verfahren getestet, um zunächst die komplexe Dynamik extrem kurzer Elektronenpakete besser zu verstehen, zu vermessen und zu kontrollieren.

Erst sehr kompakte Elektronenpakete ermöglichen es intensive, brillante, kohärente Terahertzstrahlung zu erzeugen. Die besondere Herausforderung, der Beschleuniger wie FLUTE nachgehen, ist es, die Elektronenwolke bei der Beschleunigung so kompakt zu halten, dass ihre Ausdehnung kleiner ist als die Wellenlänge der erzeugten elektromagnetischen Strahlung. Nur dann überlagern sich die Wellen konstruktiv zu Pulsen von hoher Intensität mit Dauern von Piko- oder Femtosekunden.

Langfristig gilt es die Kontrolle der Elektronenpakete so zu verbessern, dass die Terahertzstrahlung perfekt auf die Bedürfnisse der Anwender zugeschnitten werden kann. Die Terahertz-Strahlung könnte Anwendungsgebiete aufstoßen, die dem benachbarten sichtbarem Licht und den Radiowellen verschlossen sind.

Als Forschungsinfrastruktur dient FLUTE auch der Entwicklung von Messmethoden für Terahertz-Strahlung, die von den Material- und Lebenswissenschaften genutzt werden kann. Schwingungen von Proteinen lassen sich ebenso untersuchen wie das Verhalten von Supraleitern oder neuartigen Halbleitern.

Innerhalb des rund 12 Meter langen FLUTE-Beschleunigers werden die Elektronen auf eine Energie von bis zu 50 MeV beschleunigt. Durch die Kompression der Elektronenwolke auf einige Mikrometer wird Strahlung mit einer Frequenz von 30 Terahertz oder mehr möglich. Neben dem Institut für Beschleunigerphysik und Technologie des KIT sind Entwicklungspartner aus ganz Europa, allen voran das Paul Scherrer Institut (PSI) aus der Schweiz, an FLUTE beteiligt.

Video zur Funktionsweise von FLUTE:

https://www.kit.edu/kit/pi_2017_094_kompakte-beschleuniger-mit-terahertz-licht-i...

https://gigamove.rz.rwth-aachen.de/d/id/DVrNJQNxf2wfzR;jsessionid=6A188506C51CC9...

Mehr Information:
http://www.ibpt.kit.edu/1655.php

https://www.ncbi.nlm.nih.gov/labs/articles/23464187/

Weiterer Kontakt:
Kosta Schinarakis, Themenscout, Tel.: +49 721 608 41956, Fax: +49 721 608 43658, E-Mail: schinarakis@kit.edu

Das Karlsruher Institut für Technologie (KIT) verbindet seine drei Kernaufgaben Forschung, Lehre und Innovation zu einer Mission. Mit rund 9 300 Mitarbeiterinnen und Mitarbeitern sowie 25 000 Studierenden ist das KIT eine der großen natur- und ingenieurwissenschaftlichen Forschungs- und Lehreinrichtungen Europas.

KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft

Das KIT ist seit 2010 als familiengerechte Hochschule zertifiziert.

Diese Presseinformation ist im Internet abrufbar unter: www.kit.edu

Weitere Informationen:

https://www.kit.edu/kit/pi_2017_094_kompakte-beschleuniger-mit-terahertz-licht-i...
https://gigamove.rz.rwth-aachen.de/d/id/DVrNJQNxf2wfzR;jsessionid=6A188506C51CC9...
http://www.ibpt.kit.edu/1655.php
https://www.ncbi.nlm.nih.gov/labs/articles/23464187/

Monika Landgraf | Karlsruher Institut für Technologie

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Lasing am Limit
15.02.2018 | Technische Universität Berlin

nachricht Forschung für die LED-Tapete der Zukunft
15.02.2018 | Universität Bremen

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Eine Frage der Dynamik

Die meisten Ionenkanäle lassen nur eine ganz bestimmte Sorte von Ionen passieren, zum Beispiel Natrium- oder Kaliumionen. Daneben gibt es jedoch eine Reihe von Kanälen, die für beide Ionensorten durchlässig sind. Wie den Eiweißmolekülen das gelingt, hat jetzt ein Team um die Wissenschaftlerin Han Sun (FMP) und die Arbeitsgruppe von Adam Lange (FMP) herausgefunden. Solche nicht-selektiven Kanäle besäßen anders als die selektiven eine dynamische Struktur ihres Selektivitätsfilters, berichten die FMP-Forscher im Fachblatt Nature Communications. Dieser Filter könne zwei unterschiedliche Formen ausbilden, die jeweils nur eine der beiden Ionensorten passieren lassen.

Ionenkanäle sind für den Organismus von herausragender Bedeutung. Wenn zum Beispiel Sinnesreize wahrgenommen, ans Gehirn weitergeleitet und dort verarbeitet...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Erste integrierte Schaltkreise (IC) aus Plastik

Erstmals ist es einem Forscherteam am Max-Planck-Institut (MPI) für Polymerforschung in Mainz gelungen, einen integrierten Schaltkreis (IC) aus einer monomolekularen Schicht eines Halbleiterpolymers herzustellen. Dies erfolgte in einem sogenannten Bottom-Up-Ansatz durch einen selbstanordnenden Aufbau.

In diesem selbstanordnenden Aufbauprozess ordnen sich die Halbleiterpolymere als geordnete monomolekulare Schicht in einem Transistor an. Transistoren sind...

Im Focus: Quantenbits per Licht übertragen

Physiker aus Princeton, Konstanz und Maryland koppeln Quantenbits und Licht

Der Quantencomputer rückt näher: Neue Forschungsergebnisse zeigen das Potenzial von Licht als Medium, um Informationen zwischen sogenannten Quantenbits...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Aachener Optiktage: Expertenwissen in zwei Konferenzen für die Glas- und Kunststoffoptikfertigung

19.02.2018 | Veranstaltungen

Konferenz "Die Mobilität von morgen gestalten"

19.02.2018 | Veranstaltungen

Von Bitcoins bis zur Genomchirurgie

19.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Die Zukunft wird gedruckt

19.02.2018 | Architektur Bauwesen

Fraunhofer HHI präsentiert neueste VR- und 5G-Technologien auf dem Mobile World Congress

19.02.2018 | Messenachrichten

Stabile Gashydrate lösen Hangrutschung aus

19.02.2018 | Geowissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics