Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kommunikation auf Umwegen

26.02.2013
Organische Materialien sind vergleichsweise schlechte elektrische Leiter. Unter bestimmten Umständen kann sich das allerdings deutlich ändern. Wie dies in einer zweidimensionalen Schicht genau funktioniert, haben jetzt Physiker der Universität Würzburg im Experiment aufdecken können.

Organische Halbleitermaterialien besitzen viele Vorteile: Sie können in großen Mengen preiswert synthetisiert werden, sie sind leicht zu verarbeiten, mechanisch flexibel und Ressourcen schonend. Ihr großflächiger Einsatz in technischen Anwendungen, wie beispielsweise in optoelektronischen Bauelementen, wird jedoch dadurch erschwert, dass sie den elektrischen Strom im Allgemeinen schlecht leiten.


Trägt man eine einzige Moleküllage organischer Moleküle auf ein metallisches Trägermaterial auf, erhöht sich die Leitfähigkeit des organischen Materials deutlich – haben Physiker der Uni Würzburg jetzt entdeckt.

Grafik: Peter Puschnig, Michael Wießner

Unter besonderen Randbedingungen kann die Leitung allerdings sehr viel besser sein. Warum das so sein kann, haben Physiker der Universität Würzburg gemeinsam mit Wissenschaftlern aus Graz und Hiroshima jetzt aufgeklärt. Die neueste Ausgabe der Fachzeitschrift Nature Communications berichtet über diese Arbeit.

Das Experiment

„Trägt man organische Moleküle auf eine metallische Oberfläche auf, so ist die direkte Bindung zwischen ihnen normalerweise relativ schwach“, erklärt Achim Schöll. „Stattdessen stehen die einzelnen Moleküle hauptsächlich mit ihrer Unterlage in Wechselwirkung.“ Schöll ist Privatdozent am Lehrstuhl für Experimentelle Physik VII der Universität Würzburg und forscht schon seit vielen Jahren an Molekülen, die in der organischen Halbleiterelektronik eingesetzt werden könnten. In seinen jüngsten Experimenten konnte er zeigen, dass die Regel über die geringe gegenseitige Wechselwirkung nicht immer zutrifft.

Dazu haben die Physiker auf ein metallisches Trägermaterial im Ultrahochvakuum eine einzelne geordnete Schicht organischer Moleküle aufgebracht, die genau eine einzige Moleküllage dick ist. „Wir haben damit einen quasi-zweidimensionalen Halbleiter, in dem die Anordnung der Moleküle durch die Metallunterlage bestimmt wird“, beschreibt Schöll die Vorgehensweise. So angeordnet, zeigen die organischen Moleküle ein ganz ungewöhnliches Verhalten.

Die Ergebnisse

„Wir konnten nachweisen, dass die Elektronen der organischen Moleküle nun mit ihren Nachbarmolekülen in Kontakt treten – allerdings vermittelt über den metallischen Träger“, erklärt Schöll. Oder anders formuliert: Die Elektronenwolken benachbarter Moleküle bilden einen gemeinsamen Zustand aus, an dem auch das Metall beteiligt ist. Das erleichtert den Austausch von Ladungen und erhöht somit die Leitfähigkeit des organischen Materials. Die Tatsache, dass die Moleküle über den Umweg durch das Metall miteinander „kommunizieren“ sei das Spannende an den Ergebnissen, sagt Schöll.

In ihren Messungen stießen die Physiker auf ein weiteres Phänomen: „Die Stärke dieser Kommunikation ist stark richtungsabhängig“, sagt Schöll. Das heißt, während die zweidimensionale Molekülschicht Ladungen in einer Richtung vergleichsweise gut transportiert, läuft der Transport in anderen Richtungen deutlich schlechter. Ursache dafür ist der innere Aufbau der Moleküle und ihre Anordnung auf der metallischen Unterlage.
Hoher technischer Aufwand

Wie eine fingernagelgroße Metallscheibe sehen die Proben aus, mit denen die Würzburger Physiker arbeiten. Sie herzustellen und zu untersuchen ist allerdings mit einem großen technischen Aufwand verbunden. Um die Schichten in der geforderten Reinheit und Ordnung aufzubauen, ist beispielsweise ein extremes Vakuum - ein so genanntes Ultrahochvakuum - notwendig, in dem nur noch ganz vereinzelt Restgasatome vorhanden sind. Gerade einmal 10 -10 Millibar beträgt der Druck in einer solchen Vakuumkammer, was noch unter dem Druck im erdnahen Weltall liegt.

Hightech kommt auch zum Einsatz, um das Verhalten der Elektronen in der Probe zu verfolgen – winkelaufgelöste Photoelektronenspektroskopie heißt das entsprechende Verfahren. Ein Elektronen-Speicherring, also ein Teilchenbeschleuniger, der so genannte Synchrotronstrahlung erzeugt, dient dabei als UV-Strahlungsquelle, mit dessen Hilfe der Einblick in die Nanowelt gelingt.

Die nächsten Schritte

Grundlagenforschung im Bereich der Nanoanalytik sei diese Arbeit, sagt Schöll. Allerdings sei das Verständnis der komplexen Wechselwirkungen zwischen organischen Molekülen und dem metallischen Träger fundamental für zukünftige Anwendungen. Am Ende des Verständnisses sind die Forscher mit der Publikation in Nature Communications noch lange nicht angekommen. In weiteren Versuchen will Schöll jetzt untersuchen, welchen Einfluss eine Kombination verschiedener Moleküle, ein anderes Trägermaterial und eine andere Anordnung der Moleküle auf das Verhalten der Elektronen haben. Mit den Erkenntnissen aus diesen Experimenten ließen sich dann möglicherweise zweidimensionale Netzwerke mit bestimmten elektronischen Eigenschaften maßgeschneidert herstellen.

Substrate-mediated band-dispersion of adsorbate molecular states. M. Wießner, J. Ziroff, F. Forster, M. Arita, K. Shimada, P. Puschnig, A. Schöll & F. Reinert. Nature Communications, DOI: 10.1038/ncomms2522

Kontakt
PD Dr. Achim Schöll,
T: (0931) 31-85127,
achim.schoell@physik.uni-wuerzburg.de

Gunnar Bartsch | Uni Würzburg
Weitere Informationen:
http://www.uni-wuerzburg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Neue Perspektiven durch gespiegelte Systeme
05.12.2016 | Friedrich-Schiller-Universität Jena

nachricht Waschen für die Mikrowelt – Potsdamer Physiker entwickeln lichtempfindliche Seife
02.12.2016 | Universität Potsdam

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Nährstoffhaushalt einer neuentdeckten “Todeszone” im Indischen Ozean auf der Kippe

06.12.2016 | Geowissenschaften

Entschlüsselung von Kommunikationswegen zwischen Tumor- und Immunzellen beim Eierstockkrebs

06.12.2016 | Medizin Gesundheit

Bioabbaubare Polymer-Beschichtung für Implantate

06.12.2016 | Materialwissenschaften