Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kommunikation auf Umwegen

26.02.2013
Organische Materialien sind vergleichsweise schlechte elektrische Leiter. Unter bestimmten Umständen kann sich das allerdings deutlich ändern. Wie dies in einer zweidimensionalen Schicht genau funktioniert, haben jetzt Physiker der Universität Würzburg im Experiment aufdecken können.

Organische Halbleitermaterialien besitzen viele Vorteile: Sie können in großen Mengen preiswert synthetisiert werden, sie sind leicht zu verarbeiten, mechanisch flexibel und Ressourcen schonend. Ihr großflächiger Einsatz in technischen Anwendungen, wie beispielsweise in optoelektronischen Bauelementen, wird jedoch dadurch erschwert, dass sie den elektrischen Strom im Allgemeinen schlecht leiten.


Trägt man eine einzige Moleküllage organischer Moleküle auf ein metallisches Trägermaterial auf, erhöht sich die Leitfähigkeit des organischen Materials deutlich – haben Physiker der Uni Würzburg jetzt entdeckt.

Grafik: Peter Puschnig, Michael Wießner

Unter besonderen Randbedingungen kann die Leitung allerdings sehr viel besser sein. Warum das so sein kann, haben Physiker der Universität Würzburg gemeinsam mit Wissenschaftlern aus Graz und Hiroshima jetzt aufgeklärt. Die neueste Ausgabe der Fachzeitschrift Nature Communications berichtet über diese Arbeit.

Das Experiment

„Trägt man organische Moleküle auf eine metallische Oberfläche auf, so ist die direkte Bindung zwischen ihnen normalerweise relativ schwach“, erklärt Achim Schöll. „Stattdessen stehen die einzelnen Moleküle hauptsächlich mit ihrer Unterlage in Wechselwirkung.“ Schöll ist Privatdozent am Lehrstuhl für Experimentelle Physik VII der Universität Würzburg und forscht schon seit vielen Jahren an Molekülen, die in der organischen Halbleiterelektronik eingesetzt werden könnten. In seinen jüngsten Experimenten konnte er zeigen, dass die Regel über die geringe gegenseitige Wechselwirkung nicht immer zutrifft.

Dazu haben die Physiker auf ein metallisches Trägermaterial im Ultrahochvakuum eine einzelne geordnete Schicht organischer Moleküle aufgebracht, die genau eine einzige Moleküllage dick ist. „Wir haben damit einen quasi-zweidimensionalen Halbleiter, in dem die Anordnung der Moleküle durch die Metallunterlage bestimmt wird“, beschreibt Schöll die Vorgehensweise. So angeordnet, zeigen die organischen Moleküle ein ganz ungewöhnliches Verhalten.

Die Ergebnisse

„Wir konnten nachweisen, dass die Elektronen der organischen Moleküle nun mit ihren Nachbarmolekülen in Kontakt treten – allerdings vermittelt über den metallischen Träger“, erklärt Schöll. Oder anders formuliert: Die Elektronenwolken benachbarter Moleküle bilden einen gemeinsamen Zustand aus, an dem auch das Metall beteiligt ist. Das erleichtert den Austausch von Ladungen und erhöht somit die Leitfähigkeit des organischen Materials. Die Tatsache, dass die Moleküle über den Umweg durch das Metall miteinander „kommunizieren“ sei das Spannende an den Ergebnissen, sagt Schöll.

In ihren Messungen stießen die Physiker auf ein weiteres Phänomen: „Die Stärke dieser Kommunikation ist stark richtungsabhängig“, sagt Schöll. Das heißt, während die zweidimensionale Molekülschicht Ladungen in einer Richtung vergleichsweise gut transportiert, läuft der Transport in anderen Richtungen deutlich schlechter. Ursache dafür ist der innere Aufbau der Moleküle und ihre Anordnung auf der metallischen Unterlage.
Hoher technischer Aufwand

Wie eine fingernagelgroße Metallscheibe sehen die Proben aus, mit denen die Würzburger Physiker arbeiten. Sie herzustellen und zu untersuchen ist allerdings mit einem großen technischen Aufwand verbunden. Um die Schichten in der geforderten Reinheit und Ordnung aufzubauen, ist beispielsweise ein extremes Vakuum - ein so genanntes Ultrahochvakuum - notwendig, in dem nur noch ganz vereinzelt Restgasatome vorhanden sind. Gerade einmal 10 -10 Millibar beträgt der Druck in einer solchen Vakuumkammer, was noch unter dem Druck im erdnahen Weltall liegt.

Hightech kommt auch zum Einsatz, um das Verhalten der Elektronen in der Probe zu verfolgen – winkelaufgelöste Photoelektronenspektroskopie heißt das entsprechende Verfahren. Ein Elektronen-Speicherring, also ein Teilchenbeschleuniger, der so genannte Synchrotronstrahlung erzeugt, dient dabei als UV-Strahlungsquelle, mit dessen Hilfe der Einblick in die Nanowelt gelingt.

Die nächsten Schritte

Grundlagenforschung im Bereich der Nanoanalytik sei diese Arbeit, sagt Schöll. Allerdings sei das Verständnis der komplexen Wechselwirkungen zwischen organischen Molekülen und dem metallischen Träger fundamental für zukünftige Anwendungen. Am Ende des Verständnisses sind die Forscher mit der Publikation in Nature Communications noch lange nicht angekommen. In weiteren Versuchen will Schöll jetzt untersuchen, welchen Einfluss eine Kombination verschiedener Moleküle, ein anderes Trägermaterial und eine andere Anordnung der Moleküle auf das Verhalten der Elektronen haben. Mit den Erkenntnissen aus diesen Experimenten ließen sich dann möglicherweise zweidimensionale Netzwerke mit bestimmten elektronischen Eigenschaften maßgeschneidert herstellen.

Substrate-mediated band-dispersion of adsorbate molecular states. M. Wießner, J. Ziroff, F. Forster, M. Arita, K. Shimada, P. Puschnig, A. Schöll & F. Reinert. Nature Communications, DOI: 10.1038/ncomms2522

Kontakt
PD Dr. Achim Schöll,
T: (0931) 31-85127,
achim.schoell@physik.uni-wuerzburg.de

Gunnar Bartsch | Uni Würzburg
Weitere Informationen:
http://www.uni-wuerzburg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Raumschrott im Fokus
20.05.2018 | Universität Bern

nachricht Countdown für Kilogramm, Kelvin und Co.
18.05.2018 | Physikalisch-Technische Bundesanstalt (PTB)

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Bose-Einstein-Kondensat im Riesenatom - Universität Stuttgart untersucht exotisches Quantenobjekt

Passt eine ultrakalte Wolke aus zehntausenden Rubidium-Atomen in ein einzelnes Riesenatom? Forscherinnen und Forschern am 5. Physikalischen Institut der Universität Stuttgart ist dies erstmals gelungen. Sie zeigten einen ganz neuen Ansatz, die Wechselwirkung von geladenen Kernen mit neutralen Atomen bei weitaus niedrigeren Temperaturen zu untersuchen, als es bisher möglich war. Dies könnte einen wichtigen Schritt darstellen, um in Zukunft quantenmechanische Effekte in der Atom-Ion Wechselwirkung zu studieren. Das renommierte Fachjournal Physical Review Letters und das populärwissenschaftliche Begleitjournal Physics berichteten darüber.*)

In dem Experiment regten die Forscherinnen und Forscher ein Elektron eines einzelnen Atoms in einem Bose-Einstein-Kondensat mit Laserstrahlen in einen riesigen...

Im Focus: Algorithmen für die Leberchirurgie – weltweit sicherer operieren

Die Leber durchlaufen vier komplex verwobene Gefäßsysteme. Die chirurgische Entfernung von Tumoren ist daher oft eine schwierige Aufgabe. Das Fraunhofer-Institut für Bildgestützte Medizin MEVIS hat Algorithmen entwickelt, die die Bilddaten von Patienten analysieren und chirurgische Risiken berechnen. Leberkrebsoperationen werden damit besser planbar und sicherer.

Jährlich erkranken weltweit 750.000 Menschen neu an Leberkrebs, viele weitere entwickeln Lebermetastasen aufgrund anderer Krebserkrankungen. Ein chirurgischer...

Im Focus: Positronen leuchten besser

Leuchtstoffe werden schon lange benutzt, im Alltag zum Beispiel im Bildschirm von Fernsehgeräten oder in PC-Monitoren, in der Wissenschaft zum Untersuchen von Plasmen, Teilchen- oder Antiteilchenstrahlen. Gleich ob Teilchen oder Antiteilchen – treffen sie auf einen Leuchtstoff auf, regen sie ihn zum Lumineszieren an. Unbekannt war jedoch bisher, dass die Lichtausbeute mit Elektronen wesentlich niedriger ist als mit Positronen, ihren Antiteilchen. Dies hat Dr. Eve Stenson im Max-Planck-Institut für Plasmaphysik (IPP) in Garching und Greifswald jetzt beim Vorbereiten von Experimenten mit Materie-Antimaterie-Plasmen entdeckt.

„Wäre Antimaterie nicht so schwierig herzustellen, könnte man auf eine Ära hochleuchtender Niederspannungs-Displays hoffen, in der die Leuchtschirme nicht von...

Im Focus: Erklärung für rätselhafte Quantenoszillationen gefunden

Sogenannte Quanten-Vielteilchen-„Scars“ lassen Quantensysteme länger außerhalb des Gleichgewichtszustandes verweilen. Studie wurde in Nature Physics veröffentlicht

Forschern der Harvard Universität und des MIT war es vor kurzem gelungen, eine Rekordzahl von 53 Atomen einzufangen und ihren Quantenzustand einzeln zu...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

„Data Science“ – Theorie und Anwendung: Internationale Tagung unter Leitung der Uni Paderborn

18.05.2018 | Veranstaltungen

Visual-Computing an Bord der MS Wissenschaft

17.05.2018 | Veranstaltungen

Tagung »Anlagenbau und -betrieb der Zukunft«

17.05.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Bose-Einstein-Kondensat im Riesenatom - Universität Stuttgart untersucht exotisches Quantenobjekt

18.05.2018 | Physik Astronomie

Countdown für Kilogramm, Kelvin und Co.

18.05.2018 | Physik Astronomie

Wie Immunzellen Bakterien mit Säure töten

18.05.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics